CP
Carla Palleis
Author with expertise in Mechanisms of Alzheimer's Disease
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
13
h-index:
18
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2k

Multi-omics and 3D-imaging reveal bone heterogeneity and unique calvaria cells in neuroinflammation

Zeynep Kolabas et al.Dec 25, 2021
SUMMARY The meninges of the brain are an important component of neuroinflammatory response. Diverse immune cells move from the calvaria marrow into the dura mater via recently discovered skull-meninges connections (SMCs). However, how the calvaria bone marrow is different from the other bones and whether and how it contributes to human diseases remain unknown. Using multi-omics approaches and whole mouse transparency we reveal that bone marrow cells are highly heterogeneous across the mouse body. The calvaria harbors the most distinct molecular signature with hundreds of differentially expressed genes and proteins. Acute brain injury induces skull-specific alterations including increased calvaria cell numbers. Moreover, TSPO-positron-emission-tomography imaging of stroke, multiple sclerosis and neurodegenerative disease patients demonstrate disease-associated uptake patterns in the human skull, mirroring the underlying brain inflammation. Our study indicates that the calvaria is more than a physical barrier, and its immune cells may present new ways to control brain pathologies. Graphical Abstract Highlights Bone marrow across the mouse body display heterogeneity in their molecular profile Calvaria cells have a distinct profile that is relevant to brain pathologies Brain native proteins are identified in calvaria in pathological states TSPO-PET imaging of the human skull can be a proxy of neuroinflammation in the brain Supplementary Videos can be seen at: http://discotechnologies.org/Calvaria/
2k
Citation11
0
Save
0

Subcortical tau is linked to hypoperfusion in connected cortical regions in 4-repeat tauopathies

Sebastian Roemer et al.Jun 6, 2024
Abstract Four-repeat (4R) tauopathies are neurodegenerative diseases characterized by cerebral accumulation of 4R tau pathology. The most prominent 4R tauopathies are progressive supranuclear palsy (PSP) and corticobasal degeneration characterized by subcortical tau accumulation and cortical neuronal dysfunction, as shown by PET-assessed hypoperfusion and glucose hypometabolism. Yet, there is a spatial mismatch between subcortical tau deposition patterns and cortical neuronal dysfunction, and it is unclear how these two pathological brain changes are interrelated. Here, we hypothesized that subcortical tau pathology induces remote neuronal dysfunction in functionally connected cortical regions to test a pathophysiological model that mechanistically links subcortical tau accumulation to cortical neuronal dysfunction in 4R tauopathies. We included 51 Aβ-negative patients with clinically diagnosed PSP variants (n = 26) or corticobasal syndrome (n = 25) who underwent structural MRI and 18F-PI-2620 tau-PET. 18F-PI-2620 tau-PET was recorded using a dynamic one-stop-shop acquisition protocol to determine an early 0.5–2.5 min post tracer-injection perfusion window for assessing cortical neuronal dysfunction, as well as a 20–40 min post tracer-injection window to determine 4R-tau load. Perfusion-PET (i.e. early window) was assessed in 200 cortical regions, and tau-PET was assessed in 32 subcortical regions of established functional brain atlases. We determined tau epicentres as subcortical regions with the highest 18F-PI-2620 tau-PET signal and assessed the connectivity of tau epicentres to cortical regions of interest using a resting-state functional MRI-based functional connectivity template derived from 69 healthy elderly controls from the ADNI cohort. Using linear regression, we assessed whether: (i) higher subcortical tau-PET was associated with reduced cortical perfusion; and (ii) cortical perfusion reductions were observed preferentially in regions closely connected to subcortical tau epicentres. As hypothesized, higher subcortical tau-PET was associated with overall lower cortical perfusion, which remained consistent when controlling for cortical tau-PET. Using group-average and subject-level PET data, we found that the seed-based connectivity pattern of subcortical tau epicentres aligned with cortical perfusion patterns, where cortical regions that were more closely connected to the tau epicentre showed lower perfusion. Together, subcortical tau-accumulation is associated with remote perfusion reductions indicative of neuronal dysfunction in functionally connected cortical regions in 4R-tauopathies. This suggests that subcortical tau pathology may induce cortical dysfunction, which may contribute to clinical disease manifestation and clinical heterogeneity.
0
Citation1
0
Save
0

Neuroinflammation Parallels 18FPI‐2620 Positron Emission Tomography Patterns in Primary 4‐Repeat Tauopathies

Maura Malpetti et al.Jul 18, 2024
Abstract Background Preclinical, postmortem, and positron emission tomography (PET) imaging studies have pointed to neuroinflammation as a key pathophysiological hallmark in primary 4‐repeat (4R) tauopathies and its role in accelerating disease progression. Objective We tested whether microglial activation (1) progresses in similar spatial patterns as the primary pathology tau spreads across interconnected brain regions, and (2) whether the degree of microglial activation parallels tau pathology spreading. Methods We examined in vivo associations between tau aggregation and microglial activation in 31 patients with clinically diagnosed 4R tauopathies, using 18F‐PI‐2620 PET and 18F‐GE180 (translocator protein [TSPO]) PET. We determined tau epicenters, defined as subcortical brain regions with highest tau PET signal, and assessed the connectivity of tau epicenters to cortical regions of interest using a 3‐T resting‐state functional magnetic resonance imaging template derived from age‐matched healthy elderly controls. Results In 4R tauopathy patients, we found that higher regional tau PET covaries with elevated TSPO‐PET across brain regions that are functionally connected to each other ( β = 0.414, P < 0.001). Microglial activation follows similar distribution patterns as tau and distributes primarily across brain regions strongly connected to patient‐specific tau epicenters ( β = −0.594, P < 0.001). In these regions, microglial activation spatially parallels tau distribution detectable with 18F‐PI‐2620 PET. Conclusions Our findings indicate that the spatial expansion of microglial activation parallels tau distribution across brain regions that are functionally connected to each other, suggesting that tau and inflammation are closely interrelated in patients with 4R tauopathies. The combination of in vivo tau and inflammatory biomarkers could therefore support the development of immunomodulatory strategies for disease‐modifying treatments in these conditions. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
0

Neuronal and oligodendroglial, but not astroglial, tau translates to in vivo tau PET signals in individuals with primary tauopathies

Luna Slemann et al.Nov 24, 2024
Abstract Tau PET has attracted increasing interest as an imaging biomarker for 4-repeat (4R)-tauopathy progressive supranuclear palsy (PSP). However, the translation of in vitro 4R-tau binding to in vivo tau PET signals is still unclear. Therefore, we performed a translational study using a broad spectrum of advanced methodologies to investigate the sources of [ 18 F]PI-2620 tau PET signals in individuals with 4R-tauopathies, including a pilot PET autopsy study in patients. First, we conducted a longitudinal [ 18 F]PI-2620 PET/MRI study in a 4-repeat-tau mouse model (PS19) and detected elevated [ 18 F]PI-2620 PET signals in the presence of high levels of neuronal tau. An innovative approach involving cell sorting after radiotracer injection in vivo revealed higher tracer uptake in single neurons than in the astrocytes of PS19 mice. Regional [ 18 F]PI-2620 tau PET signals during the lifetime correlated with the abundance of fibrillary tau and with autoradiography signal intensity in PSP patients and disease controls who underwent autopsy 2–63 months after tau PET. In autoradiography, tau-positive neurons and oligodendrocytes with a high AT8 density, but not tau-positive astrocytes, were the drivers of [ 18 F]PI-2620 autoradiography signals in individuals with PSP. The high tau abundance in oligodendrocytes at the boundary of gray and white matter facilitated the identification of an optimized frontal lobe target region to detect the tau burden in patients with PSP. In summary, neuronal and oligodendroglial tau constitutes the dominant source of tau PET radiotracer binding in 4-repeat-tauopathies, translating to an in vivo signal.