JL
Johannes Levin
Author with expertise in Mechanisms of Alzheimer's Disease
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(80% Open Access)
Cited by:
131
h-index:
29
/
i10-index:
80
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2k

Multi-omics and 3D-imaging reveal bone heterogeneity and unique calvaria cells in neuroinflammation

Zeynep Kolabas et al.Dec 25, 2021
+46
T
J
Z
SUMMARY The meninges of the brain are an important component of neuroinflammatory response. Diverse immune cells move from the calvaria marrow into the dura mater via recently discovered skull-meninges connections (SMCs). However, how the calvaria bone marrow is different from the other bones and whether and how it contributes to human diseases remain unknown. Using multi-omics approaches and whole mouse transparency we reveal that bone marrow cells are highly heterogeneous across the mouse body. The calvaria harbors the most distinct molecular signature with hundreds of differentially expressed genes and proteins. Acute brain injury induces skull-specific alterations including increased calvaria cell numbers. Moreover, TSPO-positron-emission-tomography imaging of stroke, multiple sclerosis and neurodegenerative disease patients demonstrate disease-associated uptake patterns in the human skull, mirroring the underlying brain inflammation. Our study indicates that the calvaria is more than a physical barrier, and its immune cells may present new ways to control brain pathologies. Graphical Abstract Highlights Bone marrow across the mouse body display heterogeneity in their molecular profile Calvaria cells have a distinct profile that is relevant to brain pathologies Brain native proteins are identified in calvaria in pathological states TSPO-PET imaging of the human skull can be a proxy of neuroinflammation in the brain Supplementary Videos can be seen at: http://discotechnologies.org/Calvaria/
2k
Citation11
0
Save
5

Neuroimaging within the Dominantly Inherited Alzheimer’s Network (DIAN): PET and MRI

Nicole McKay et al.Mar 30, 2022
+57
C
R
N
Abstract The Dominantly Inherited Alzheimer Network (DIAN) Observational Study is an international collaboration studying autosomal dominant Alzheimer disease (ADAD). This rare form of Alzheimer disease (AD) is caused by mutations in the presenilin 1 (PSEN1) , presenilin 2 (PSEN2) , or amyloid precursor protein ( APP ) genes. As individuals from these families have a 50% chance of inheriting the familial mutation, this provides researchers with a well-matched cohort of carriers vs non-carriers for case-control studies. An important trait of ADAD is that the age at symptom onset is highly predictable and consistent for each specific mutation, allowing researchers to estimate an individual’s point in their disease time course prior to symptom onset. Although ADAD represents only a small proportion (approximately 0.1%) of all AD cases, studying this form of AD allows researchers to investigate preclinical AD and the progression of changes that occur within the brain prior to AD symptom onset. Furthermore, the young age at symptom onset (typically 30-60 years) means age-related comorbidities are much less prevalent than in sporadic AD, thereby allowing AD pathophysiology to be studied independent of these confounds. A major goal of the DIAN Observational Study is to create a global resource for AD researchers. To that end, the current manuscript provides an overview of the DIAN magnetic resonance imaging (MRI) and positron emission tomography (PET) protocols and highlights the key imaging results of this study to date.
5
Citation6
0
Save
46

Functional brain age prediction suggests accelerated aging in preclinical familial Alzheimer’s disease, irrespective of fibrillar amyloid-beta pathology

Julie Gonneaud et al.May 8, 2020
+16
A
J
J
Abstract We aimed at developing a model able to predict brain aging from resting state functional connectivity (rs-fMRI) and assessing whether genetic risk/determinants of Alzheimer’s disease (AD) and amyloid (Aβ) pathology contributes to accelerated brain aging. Using data collected in 1340 cognitively unimpaired participants from 18 to 94 years old selected across multi-site cohorts, we showed that chronological age can be predicted across the whole lifespan from topological properties of graphs constructed from rs-fMRI. We subsequently used the difference between the model-predicted age and the chronological age in pre-symptomatic autosomal dominant AD (ADAD) mutation carriers and asymptomatic individuals at risk of sporadic AD and assessed the influence of genetics and Aβ pathology on brain age. Applying our predictive model in the context of preclinical AD revealed that the pre-symptomatic phase of ADAD is characterized by accelerated functional brain aging. This phenomenon is independent from, and might precede, detectable fibrillar Aβ deposition.
46
Citation5
0
Save
41

Global network structure and local transcriptomic vulnerability shape atrophy in sporadic and genetic behavioral variant frontotemporal dementia

Golia Shafiei et al.Aug 26, 2021
+34
M
R
G
Abstract Connections among brain regions allow pathological perturbations to spread from a single source region to multiple regions. Patterns of neurodegeneration in multiple diseases, including behavioral variant of frontotemporal dementia (bvFTD), resemble the large-scale functional systems, but how bvFTD-related atrophy patterns relate to structural network organization remains unknown. Here we investigate whether neurodegeneration patterns in sporadic and genetic bvFTD are conditioned by connectome architecture. Regional atrophy patterns were estimated in both genetic bvFTD (75 patients, 247 controls) and sporadic bvFTD (70 patients, 123 controls). We first identify distributed atrophy patterns in bvFTD, mainly targeting areas associated with the limbic intrinsic network and insular cytoarchitectonic class. Regional atrophy was significantly correlated with atrophy of structurally- and functionally-connected neighbors, demonstrating that network structure shapes atrophy patterns. The anterior insula was identified as the predominant group epicenter of brain atrophy using data-driven and simulation-based methods, with some secondary regions in frontal ventromedial and anteromedial temporal areas. Finally, we find that FTD-related genes, namely C9orf72 and TARDBP, confer local transcriptomic vulnerability to the disease, effectively modulating the propagation of pathology through the connectome. Collectively, our results demonstrate that atrophy patterns in sporadic and genetic bvFTD are jointly shaped by global connectome architecture and local transcriptomic vulnerability.
41
Citation4
0
Save
1

Functional variations in gamma-secretase activity are critical determinants of the clinical, biomarker, and cognitive progression of autosomal dominant Alzheimer’s disease

Stephanie Schultz et al.Jul 5, 2023
+25
G
T
S
ABSTRACT Background The balance between production, clearance, and toxicity of Aβ peptides is central to Alzheimer’s disease (AD) pathobiology. Though highly variable in terms of age at symptom onset (AAO), hundreds of variants in PSEN1 cause autosomal dominant forms of AD (ADAD) with nearly complete penetrance. PSEN1 forms the catalytic core of the γ-secretase complex and thereby directly mediates the production of longer, aggregation-prone Aβ peptides relative to shorter, non-aggregating peptides. We hypothesized that the broad AAO and biomarker heterogeneity seen across ADAD would be predictable based on mutation-specific differences in the production of Aβ species. Methods Aβ-37, 38, 40, 42, and 43 production was quantified from 161 unique PSEN1 variants expressed in HEK293 cells. Prediction of AAO was carried out in 106 variants with available AAO and then replicated in 55 variants represented across 190 PSEN1 mutation carriers who have detailed cognitive and biomarker data from the Dominantly Inherited Alzheimer’s Network (DIAN). Results Variations in Aβ production across the 161 mutations examined in cell-based models were highly predictive of AAO. In those with corresponding in vivo data from the DIAN study, our cell-based γ-secretase composite was strongly associated with biomarker and cognitive trajectories. Conclusions These findings elucidate the critical link between γ-secretase function, Aβ production, and AD progression and offer mechanistic support for the amyloid hypothesis. The approach used here represents a powerful tool to account for heterogeneity in disease progression in ADAD clinical trials and to assess the pathogenicity of variants of unknown significance or with limited family history.
1
Citation2
0
Save
0

Neuronal and oligodendroglial but not astroglial tau translates to in vivo tau-PET signals in primary tauopathies

Luna Slemann et al.May 7, 2024
+36
S
A
L
Summary Tau-PET receives growing interest as an imaging biomarker for the 4-repeat tauopathy progressive supranuclear palsy (PSP). However, the translation of in vitro 4R-tau binding to in vivo tau-PET signals is still unclear. Therefore, we conducted a longitudinal [ 18 F]PI-2620 PET/MRI study in a 4-repeat-tau mouse model (PS19) and found elevated [ 18 F]PI-2620 PET signal in the presence of high neuronal tau. Cell sorting after radiotracer injection in vivo revealed higher tracer uptake in single neurons compared to astrocytes of PS19 mice. Regional [ 18 F]PI-2620 tau-PET signals during lifetime correlated with abundance of fibrillary tau in subsequent autopsy samples of PSP patients and disease controls. In autoradiography, tau-positive neurons and oligodendrocytes with high AT8 density but not tau-positive astrocytes were the driver of [ 18 F]PI-2620 autoradiography signals in PSP. In summary, neuronal and oligodendroglial tau constitutes the dominant source of tau-PET radiotracer binding in 4-repeat-tauopathies, yielding the capacity to translate to an in vivo signal.
0
Citation1
0
Save
0

Analysis of brain atrophy and local gene expression implicates astrocytes in Frontotemporal dementia

André Altmann et al.Dec 12, 2019
+39
F
J
A
Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder characterized by neuronal loss in the frontal and temporal lobes. Despite progress in understanding which genes are associated with the aetiology of FTD (C9orf72, GRN and MAPT), the biological basis of how mutations in these genes lead to cell loss in specific cortical regions remains unclear. In this work we combined gene expression data for 16,912 genes from the Allen Institute for Brain Science atlas with brain maps of gray matter atrophy in symptomatic C9orf72, GRN and MAPT carriers obtained from the Genetic FTD Initiative study. A set of 405 and 250 genes showed significant positive and negative correlation, respectively, with atrophy patterns in all three maps. The gene set with increased expression in spared cortical regions, i.e., signaling regional resilience to atrophy, is enriched for neuronal genes, while the gene set with increased expression in atrophied regions, i.e., signaling regional vulnerability, is enriched for astrocyte genes. Notably, these results extend earlier findings from proteomic analyses in the same cortical regions of interest comparing healthy controls and patients with FTD. Thus, our analysis indicates that cortical regions showing the most severe atrophy in genetic FTD are those with the highest astrocyte density in healthy subjects. Therefore, astrocytes may play a more active role in the onset of neurodegeneration in FTD than previously assumed, e.g., through emergence of neurotoxic (A1) astrocytes.
0

Data-driven algorithm for the diagnosis of behavioral variant frontotemporal dementia

Ana Manera et al.Dec 20, 2019
+32
R
M
A
INTRODUCTION: Brain structural imaging is paramount for the diagnosis of behavioral variant of frontotemporal dementia (bvFTD), but it has low sensitivity leading to erroneous or late diagnosis. METHODS: A total of 515 subjects from two different bvFTD databases (training and validation cohorts) were included to perform voxel-wise deformation-based morphometry analysis to identify regions with significant differences between bvFTD and controls. A random forest classifier was used to individually predict bvFTD from morphometric differences in isolation and together with bedside cognitive scores. RESULTS: Average ten-fold cross-validation accuracy was 89% (82% sensitivity, 93% specificity) using only MRI and 94% (89% sensitivity, 98% specificity) with the addition of semantic fluency. In a separate validation cohort of genetically confirmed bvFTD, accuracy was 88% (81% sensitivity, 92% specificity) with MRI and 91% (79% sensitivity, 96% specificity) with added cognitive scores. DISCUSSION: The random forest classifier developed can accurately predict bvFTD at the individual subject level.
11

Cerebellar and subcortical atrophy contribute to psychiatric symptoms in frontotemporal dementia

Aurélie Bussy et al.Nov 16, 2021
+43
J
M
A
Abstract Recent studies have suggested that cerebellar and subcortical structures are impacted early in the disease progression of genetic frontotemporal dementia (FTD) due to microtubule-associated protein tau ( MAPT ), progranulin ( GRN ) and chromosome 9 open reading frame 72 ( C9orf72 ). However, the clinical contribution of the structures involved in the cerebello-subcortical circuitry has been understudied in FTD given their potentially central role in cognition and behaviour processes. The present study aims to investigate whether there is an association between the atrophy of the cerebellar and subcortical structures, and neuropsychiatric symptoms (using the revised version of the Cambridge Behavioral Inventory, CBI-R) across genetic mutations and whether this association starts during the preclinical phase of the disease. Our study included 983 participants from the Genetic Frontotemporal dementia Initiative (GENFI) including mutation carriers (n=608) and non-carrier first-degree relatives of known symptomatic carriers (n= 375). Voxel-wise analysis of the thalamus, striatum, globus pallidus, amygdala, and the cerebellum was performed using deformation based morphometry (DBM) and partial least squares analyses (PLS) were used to link morphometry and behavioural symptoms. Our univariate results suggest that in this group of primarily presymptomatic subjects, volume loss in subcortical and cerebellar structure was primarily a function of aging, with only the C9orf72 group showing more pronounced volume loss in the thalamus compared to the non-carrier individuals. PLS analyses demonstrated that the cerebello-subcortical circuitry is related to all neuropsychiatric symptoms from the CBI-R, with significant overlap in brain/behaviour patterns, but also specificity for each genetic group. The biggest differences were in the extent of the cerebellar involvement (larger extent in C9orf72 group) and more prominent amygdalar contribution in the MAPT group. Finally, our findings demonstrated that C9orf72 and MAPT brain scores were related to estimated years before the age of symptom onset (EYO) in a second order relationship highlighting a steeper brain score decline 20 years before expected symptom onset, while GRN brain scores were related to age and not EYO. Overall, these results demonstrated the important role of the subcortical structures and especially of the cerebellum in genetic FTD symptom expression.