BI
Bernd Ittermann
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(53% Open Access)
Cited by:
2,129
h-index:
50
/
i10-index:
151
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy

Evgeniya Kirilina et al.Mar 9, 2012
A major methodological challenge of functional near-infrared spectroscopy (fNIRS) is its high sensitivity to haemodynamic fluctuations in the scalp. Superficial fluctuations contribute on the one hand to the physiological noise of fNIRS, impairing the signal-to-noise ratio, and may on the other hand be erroneously attributed to cerebral changes, leading to false positives in fNIRS experiments. Here we explore the localisation, time course and physiological origin of task-evoked superficial signals in fNIRS and present a method to separate them from cortical signals. We used complementary fNIRS, fMRI, MR-angiography and peripheral physiological measurements (blood pressure, heart rate, skin conductance and skin blood flow) to study activation in the frontal lobe during a continuous performance task. The General Linear Model (GLM) was applied to analyse the fNIRS data, which included an additional predictor to account for systemic changes in the skin. We found that skin blood volume strongly depends on the cognitive state and that sources of task-evoked systemic signals in fNIRS are co-localized with veins draining the scalp. Task-evoked superficial artefacts were mainly observed in concentration changes of oxygenated haemoglobin and could be effectively separated from cerebral signals by GLM analysis. Based on temporal correlation of fNIRS and fMRI signals with peripheral physiological measurements we conclude that the physiological origin of the systemic artefact is a task-evoked sympathetic arterial vasoconstriction followed by a decrease in venous volume. Since changes in sympathetic outflow accompany almost any cognitive and emotional process, we expect scalp vessel artefacts to be present in a wide range of fNIRS settings used in neurocognitive research. Therefore a careful separation of fNIRS signals originating from activated brain and from scalp is a necessary precondition for unbiased fNIRS brain activation maps.
0
Citation446
0
Save
0

Neuropsychosocial profiles of current and future adolescent alcohol misusers

Robert Whelan et al.Jul 1, 2014
Many factors have been proposed as contributors to risk of alcohol abuse, but quantifying their influence has been difficult; here a longitudinal study of a large sample of adolescents and machine learning are used to generate models of predictors of current and future alcohol abuse, assessing the relative contribution of many factors, including life history, individual personality differences, brain structure and genotype. Many factors have been identified as contributors to risk of alcohol abuse but their relative importance has been difficult to quantify. Robert Whelan et al. constructed models of current and future adolescent binge drinking using data from the IMAGEN project, a study of risk-taking behaviour in more than 2,000 teenagers recruited at age 14 from the United Kingdom, Ireland, France and Germany. The authors used machine learning to generate models of predictors of current and future alcohol abuse, assessing the contribution of many factors including life history, individual personality differences, brain structure and genotype. A key finding of the study was that personality factors were, surprisingly, not particularly useful predictors of future alcohol misuse. In contrast, neurodevelopmental immaturity, certain structural and functional indicators in the brain, sexual experience and prenatal alcohol exposure were associated with current and future binge drinking. A comprehensive account of the causes of alcohol misuse must accommodate individual differences in biology, psychology and environment, and must disentangle cause and effect. Animal models1 can demonstrate the effects of neurotoxic substances; however, they provide limited insight into the psycho-social and higher cognitive factors involved in the initiation of substance use and progression to misuse. One can search for pre-existing risk factors by testing for endophenotypic biomarkers2 in non-using relatives; however, these relatives may have personality or neural resilience factors that protect them from developing dependence3. A longitudinal study has potential to identify predictors of adolescent substance misuse, particularly if it can incorporate a wide range of potential causal factors, both proximal and distal, and their influence on numerous social, psychological and biological mechanisms4. Here we apply machine learning to a wide range of data from a large sample of adolescents (n = 692) to generate models of current and future adolescent alcohol misuse that incorporate brain structure and function, individual personality and cognitive differences, environmental factors (including gestational cigarette and alcohol exposure), life experiences, and candidate genes. These models were accurate and generalized to novel data, and point to life experiences, neurobiological differences and personality as important antecedents of binge drinking. By identifying the vulnerability factors underlying individual differences in alcohol misuse, these models shed light on the aetiology of alcohol misuse and suggest targets for prevention.
0

The Brain’s Response to Reward Anticipation and Depression in Adolescence: Dimensionality, Specificity, and Longitudinal Predictions in a Community-Based Sample

Argyris Stringaris et al.Jun 18, 2015
Objective: The authors examined whether alterations in the brain’s reward network operate as a mechanism across the spectrum of risk for depression. They then tested whether these alterations are specific to anhedonia as compared with low mood and whether they are predictive of depressive outcomes. Method: Functional MRI was used to collect blood-oxygen-level-dependent (BOLD) responses to anticipation of reward in the monetary incentive task in 1,576 adolescents in a community-based sample. Adolescents with current subthreshold depression and clinical depression were compared with matched healthy subjects. In addition, BOLD responses were compared across adolescents with anhedonia, low mood, or both symptoms, cross-sectionally and longitudinally. Results: Activity in the ventral striatum was reduced in participants with subthreshold and clinical depression relative to healthy comparison subjects. Low ventral striatum activation predicted transition to subthreshold or clinical depression in previously healthy adolescents at 2-year follow-up. Brain responses during reward anticipation decreased in a graded manner between healthy adolescents, adolescents with current or future subthreshold depression, and adolescents with current or future clinical depression. Low ventral striatum activity was associated with anhedonia but not low mood; however, the combined presence of both symptoms showed the strongest reductions in the ventral striatum in all analyses. Conclusions: The findings suggest that reduced striatal activation operates as a mechanism across the risk spectrum for depression. It is associated with anhedonia in healthy adolescents and is a behavioral indicator of positive valence systems, consistent with predictions based on the Research Domain Criteria.
0

Cognitive and brain development is independently influenced by socioeconomic status and polygenic scores for educational attainment

Nicholas Judd et al.Dec 6, 2019
Abstract Genetic factors and socioeconomic (SES) inequalities play a large role in educational attainment, and both have been associated with variations in brain structure and cognition. However, genetics and SES are correlated, and no prior study has assessed their neural associations independently. Here we used polygenic score for educational attainment (EduYears-PGS) as well as SES, in a longitudinal study of 551 adolescents, to tease apart genetic and environmental associations with brain development and cognition. Subjects received a structural MRI scan at ages 14 and 19. At both time-points, they performed three working memory (WM) tasks. SES and EduYears-PGS were correlated (r = 0.27) and had both common and independent associations with brain structure and cognition. Specifically, lower SES was related to less total cortical surface area and lower WM. EduYears-PGS was also related to total cortical surface area, but in addition had a regional association with surface area in the right parietal lobe, a region related to non-verbal cognitive functions, including mathematics, spatial cognition, and WM. SES, but not EduYears-PGS, was related to a change in total cortical surface area from age 14 to 19. This is the first study demonstrating a regional association of EduYears-PGS and the independent prediction of SES on cognitive function and brain development. It suggests that the SES inequalities, in particular parental education, are related to global aspects of cortical development, and exert a persistent influence on brain development during adolescence. Significance statement The influence of socioeconomic (SES) inequalities on brain and cognitive development is a hotly debated topic. However, previous studies have not considered that genetic factors overlap with SES. Here we showed, for the first time, that SES and EduYears-PGS (a score from thousands of genetic markers for educational attainment) have independent associations with both cognition and global cortical surface area in adolescents. EduYears-PGS also had a localized association in the brain: the intraparietal sulcus, a region related to non-verbal intelligence. In contrast, SES had global, but not regional, associations, and these persisted throughout adolescence. This suggests that the influence of SES inequalities is widespread – a result that opposes the current paradigm and can help inform policies in education.
10

Genetic variation in CSMD1 affects amygdala connectivity and prosocial behavior

KC Bickart et al.Sep 27, 2020
Abstract The amygdala is one of the most widely connected structures in the primate brain and plays a key role in social and emotional behavior. Here, we present the first genome-wide association study (GWAS) of whole-brain resting-state amygdala networks to discern whether connectivity in these networks could serve as an endophenotype for social behavior. Leveraging published resting-state amygdala networks as a priori endophenotypes in a GWAS meta-analysis of two adolescent cohorts, we identified a common polymorphism on chr.8p23.2 (rs10105357 A/G, MAF (G)=0.35) associated with stronger connectivity in the medial amygdala network (beta=0.20, p =2.97×10 −8 ). This network contains regions that support reward processes and affiliative behavior. People carrying two copies of the minor allele for rs10105357 participate in more prosocial behaviors (t=2.644, p =0.008) and have higher CSMD1 expression in the temporal cortex (t=3.281, p=0.002) than people with one or no copy of the allele. In post-mortem brains across the lifespan, we found that CSMD1 expression is relatively high in the amygdala (2.79 fold higher than white matter, p =1.80×10 −29 ), particularly so for nuclei in the medial amygdala, reaching a maximum in later stages of development. Amygdala network endophenotyping has the potential to accelerate genetic discovery in disorders of social function, such as autism, in which CSMD1 may serve as a diagnostic and therapeutic target.
10
Citation2
0
Save
Load More