JB
José Blanca
Author with expertise in Viral RNA Silencing and Plant Immunity
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(64% Open Access)
Cited by:
2,288
h-index:
41
/
i10-index:
57
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

GoldenBraid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology

Alejandro Sarrión-Perdigones et al.May 13, 2013
Plant synthetic biology aims to apply engineering principles to plant genetic design. One strategic requirement of plant synthetic biology is the adoption of common standardized technologies that facilitate the construction of increasingly complex multigene structures at the DNA level while enabling the exchange of genetic building blocks among plant bioengineers. Here, we describe GoldenBraid 2.0 (GB2.0), a comprehensive technological framework that aims to foster the exchange of standard DNA parts for plant synthetic biology. GB2.0 relies on the use of type IIS restriction enzymes for DNA assembly and proposes a modular cloning schema with positional notation that resembles the grammar of natural languages. Apart from providing an optimized cloning strategy that generates fully exchangeable genetic elements for multigene engineering, the GB2.0 toolkit offers an ever-growing open collection of DNA parts, including a group of functionally tested, premade genetic modules to build frequently used modules like constitutive and inducible expression cassettes, endogenous gene silencing and protein-protein interaction tools, etc. Use of the GB2.0 framework is facilitated by a number of Web resources that include a publicly available database, tutorials, and a software package that provides in silico simulations and laboratory protocols for GB2.0 part domestication and multigene engineering. In short, GB2.0 provides a framework to exchange both information and physical DNA elements among bioengineers to help implement plant synthetic biology projects.
0
Citation371
0
Save
0

Application of Genomic Tools in Plant Breeding

Ana Pérez‐de‐Castro et al.Apr 1, 2012
Plant breeding has been very successful in developing improved varieties using conventional tools and methodologies. Nowadays, the availability of genomic tools and resources is leading to a new revolution of plant breeding, as they facilitate the study of the genotype and its relationship with the phenotype, in particular for complex traits. Next Generation Sequencing (NGS) technologies are allowing the mass sequencing of genomes and transcriptomes, which is producing a vast array of genomic information. The analysis of NGS data by means of bioinformatics developments allows discovering new genes and regulatory sequences and their positions, and makes available large collections of molecular markers. Genome-wide expression studies provide breeders with an understanding of the molecular basis of complex traits. Genomic approaches include TILLING and EcoTILLING, which make possible to screen mutant and germplasm collections for allelic variants in target genes. Re-sequencing of genomes is very useful for the genome-wide discovery of markers amenable for high-throughput genotyping platforms, like SSRs and SNPs, or the construction of high density genetic maps. All these tools and resources facilitate studying the genetic diversity, which is important for germplasm management, enhancement and use. Also, they allow the identification of markers linked to genes and QTLs, using a diversity of techniques like bulked segregant analysis (BSA), fine genetic mapping, or association mapping. These new markers are used for marker assisted selection, including marker assisted backcross selection, 'breeding by design', or new strategies, like genomic selection. In conclusion, advances in genomics are providing breeders with new tools and methodologies that allow a great leap forward in plant breeding, including the 'superdomestication' of crops and the genetic dissection and breeding for complex traits.
0
Citation263
0
Save
0

Genomic variation in tomato, from wild ancestors to contemporary breeding accessions

José Blanca et al.Apr 1, 2015
Domestication modifies the genomic variation of species. Quantifying this variation provides insights into the domestication process, facilitates the management of resources used by breeders and germplasm centers, and enables the design of experiments to associate traits with genes. We described and analyzed the genetic diversity of 1,008 tomato accessions including Solanum lycopersicum var. lycopersicum (SLL), S. lycopersicum var. cerasiforme (SLC), and S. pimpinellifolium (SP) that were genotyped using 7,720 SNPs. Additionally, we explored the allelic frequency of six loci affecting fruit weight and shape to infer patterns of selection. Our results revealed a pattern of variation that strongly supported a two-step domestication process, occasional hybridization in the wild, and differentiation through human selection. These interpretations were consistent with the observed allele frequencies for the six loci affecting fruit weight and shape. Fruit weight was strongly selected in SLC in the Andean region of Ecuador and Northern Peru prior to the domestication of tomato in Mesoamerica. Alleles affecting fruit shape were differentially selected among SLL genetic subgroups. Our results also clarified the biological status of SLC. True SLC was phylogenetically positioned between SP and SLL and its fruit morphology was diverse. SLC and “cherry tomato” are not synonymous terms. The morphologically-based term “cherry tomato” included some SLC, contemporary varieties, as well as many admixtures between SP and SLL. Contemporary SLL showed a moderate increase in nucleotide diversity, when compared with vintage groups. This study presents a broad and detailed representation of the genomic variation in tomato. Tomato domestication seems to have followed a two step-process; a first domestication in South America and a second step in Mesoamerica. The distribution of fruit weight and shape alleles supports that domestication of SLC occurred in the Andean region. Our results also clarify the biological status of SLC as true phylogenetic group within tomato. We detect Ecuadorian and Peruvian accessions that may represent a pool of unexplored variation that could be of interest for crop improvement.
0
Citation216
0
Save
11

K-seq, an affordable, reliable, and open Klenow NGS-based genotyping technology

Pello Ziarsolo et al.Nov 17, 2020
Abstract K-seq, a new genotyping methodology based on the amplification of genomic regions using two steps of Klenow amplification with short oligonucleotides, followed by standard PCR and Illumina sequencing, is presented. The protocol was accompanied by software developed to aid with primer set design. As the first examples, K-seq in species as diverse as tomato, dog and wheat was developed. K-seq provided genetic distances similar to those based on WGS in dogs. Experiments comparing K-seq and GBS in tomato showed similar genetic results, although K-seq had the advantage of finding more SNPs for the same number of Illumina reads. The technology reproducibility was tested with two independent runs of the tomato samples, and the correlation coefficient of the SNP coverages between samples was 0.8 and the genotype match was above 94%. K-seq also proved to be useful in polyploid species. The wheat samples generated specific markers for all subgenomes, and the SNPs generated from the diploid ancestors were located in the expected subgenome with accuracies greater than 80%. K-seq is an open, patent-unencumbered, easy-to-set-up, cost-effective and reliable technology ready to be used by any molecular biology laboratory without special equipment in many genetic studies.
11
Citation2
0
Save
0

Large scale gene duplication affected the European eel (Anguilla anguilla) after the 3R teleost duplication

Christoffer Rozenfeld et al.Dec 12, 2017
Abstract Genomic scale duplication of genes generates raw genetic material, which may facilitate new adaptations for the organism. Previous studies on eels have reported specific gene duplications, however a species-specific large-scale gene duplication has never before been proposed. In this study, we have assembled a de novo European eel transcriptome and the data show more than a thousand gene duplications that happened, according to a 4dTv analysis, after the teleost specific 3R whole genome duplication (WGD). The European eel has a complex and peculiar life cycle, which involves extensive migration, drastic habitat changes and metamorphoses, all of which could have been facilitated by the genes derived from this large-scale gene duplication. Of the paralogs created, those with a lower genetic distance are mostly found in tandem repeats, indicating that they are young segmental duplications. The older eel paralogs showed a different pattern, with more extensive synteny suggesting that a Whole Genome Duplication (WGD) event may have happened in the eel lineage. Furthermore, an enrichment analysis of eel specific paralogs further revealed GO-terms typically enriched after a WGD. Thus, this study, to the best of our knowledge, is the first to present evidence indicating an Anguillidae family specific large-scale gene duplication, which may include a 4R WGD.
0
Citation1
0
Save
0

A stable pollination environment limits current but not potential evolution of floral traits

María Castellanos et al.Mar 19, 2019
Plants’ vast variation in floral traits at a macroevolutionary level is often interpreted as the result of adaptation to pollinators. However, field studies often find no evidence of pollinator-mediated selection on flowers. This could be explained by periods of stasis, when selection is relaxed under stable conditions, followed by pollinator changes that provide innovative selection. We asked if periods of stasis are caused by stabilizing or absence of other forms of selection on floral traits, or by low trait heritability even if selection is present. We studied Ulex parviflorus , a plant predominantly pollinated by one bee species across its range. We measured heritability and evolvability of floral traits, using genome-wide molecular relatedness in a wild population, and combined this with estimates of selection. We found evidence for both stabilizing selection and low trait heritability as explanations for stasis in flowers. The area of the standard petal is under stabilizing selection, but the variability observed in the wild is not heritable. A separate trait, floral size, in turn presents high heritability, but is not currently under selection. We show how a stable pollination environment can lead to a lack of evolutionary change, yet maintain heritable variation to respond to future selection pressures.
Load More