YP
Yijia Pan
Author with expertise in Chimeric Antigen Receptor T Cell Therapy
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
0
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Genetic ablation of adhesion ligands averts rejection of allogeneic immune cells

Quirin Hammer et al.Oct 9, 2023
+17
B
T
Q
SUMMARY Allogeneic cell therapies hold promise for broad clinical implementation, but face limitations due to potential rejection by the recipient immune system. Silencing of beta-2-microglobulin ( B2M ) expression is commonly employed to evade T cell-mediated rejection, although absence of B2M triggers missing-self responses by recipient natural killer (NK) cells. Here, we demonstrate that deletion of the adhesion ligands CD54 and CD58 on targets cells robustly dampens NK cell reactivity across all sub-populations. Genetic deletion of CD54 and CD58 in B2M -deficient allogeneic chimeric antigen receptor (CAR) T and multi-edited induced pluripotent stem cell (iPSC)-derived NK cells reduces their susceptibility to rejection by NK cells in vitro and in vivo without affecting their anti-tumor effector potential. Thus, these data suggest that genetic ablation of adhesion ligands effectively alleviates rejection of allogeneic immune cells for immunotherapy.
3

Mechanosensor Piezo1 Mediates Bimodal Patterns of Intracellular Signaling

Yijia Pan et al.May 20, 2022
+9
D
L
Y
Abstract Piezo1 belongs to mechano-activatable cation channels serving as biological force sensors. However, the molecular events downstream of Piezo1 activation remain unclear. In this study, we used biosensors based on fluorescence resonance energy transfer (FRET) to investigate the dynamic modes of Piezo1-mediated signaling and revealed a bimodal pattern of Piezo1-induced intracellular calcium signaling. Laser-induced shockwaves (LIS) and its associated shear stress can mechanically activate Piezo1 to induce transient intracellular calcium (Ca [i] ) elevation, accompanied by an increase in FAK activity. Interestingly, multiple pulses of shockwave stimulation caused a more sustained calcium increase and a decrease of FAK activity. Similarly, tuning the degree of Piezo1 activation by titrating either the dosage of Piezo1 ligand Yoda1 or the expression level of Piezo1, produced a similar bimodal pattern of FAK responses. Specifically, a low degree of Piezo1 activation (transient mode) leads to a transient Ca [i] response with FAK activation, whereas a high degree of Piezo1 activation (sustained mode) causes a sustained Ca [i] response with FAK suppression. Further investigation revealed that SHP2 serves as an intermediate regulator mediating this bimodal pattern in Piezo1 sensing and signaling. These results suggest that the degrees of Piezo1 activation induced by both mechanical LIS and chemical ligand stimulation may determine downstream signaling characteristics.
0

Acoustogenetic Control of CAR T Cells via Focused Ultrasound

Yiqian Wu et al.Feb 19, 2020
+14
J
X
Y
Optogenetics can control specific molecular events in living systems, but the penetration depth of light is typically limited at hundreds of micrometers. Focused ultrasound (FUS), on the other hand, can deliver energy safely and noninvasively into tissues at depths of centimeters. Here we have developed an acoustogenetic approach using short-pulsed FUS to remotely and directly control the genetics and cellular functions of engineered mammalian cells for therapeutic purposes. We applied this acoustogenetic approach to control chimeric antigen receptor (CAR) T cells with high spatiotemporal precision, aiming to mitigate the potentially lethal "on-target off-tumor" effects of CAR T cell therapy. We first verified the controllability of our acoustogenetic CAR T cells in recognizing and killing tumor cells in vitro, and then applied this approach in vivo to suppress tumor growth of both lymphoma and prostate cancers. The results indicate that FUS-based acoustogenetics can allow the noninvasive and remote activation, without any exogenous cofactor, of different types of CAR T cells for cancer therapeutics.