TM
Thomas Mailund
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(73% Open Access)
Cited by:
4,025
h-index:
41
/
i10-index:
79
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Great ape genetic diversity and population history

Javier Prado-Martinez et al.Jul 1, 2013
High-coverage sequencing of 79 (wild and captive) individuals representing all six non-human great ape species has identified over 88 million single nucleotide polymorphisms providing insight into ape genetic variation and evolutionary history and enabling comparison with human genetic diversity. In an effort to provide insights into great ape genetic variation, the authors sequence 79 wild- and captive-born individuals from across all six great ape species and seven subspecies. Their data and analyses shed light on population structure and gene flow, inbreeding, inferred dynamics of effective population sizes and the differences in the rate of gene loss among the great apes. This new catalogue of great ape genome diversity provides a valuable resource for evolutionary and conservation studies. Most great ape genetic variation remains uncharacterized1,2; however, its study is critical for understanding population history3,4,5,6, recombination7, selection8 and susceptibility to disease9,10. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria–Cameroon/western and central/eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost all species. We discover and assign 1,982 loss-of-function variants throughout the human and great ape lineages, determining that the rate of gene loss has not been different in the human branch compared to other internal branches in the great ape phylogeny. This comprehensive catalogue of great ape genome diversity provides a framework for understanding evolution and a resource for more effective management of wild and captive great ape populations.
0
Citation882
0
Save
0

Insights into hominid evolution from the gorilla genome sequence

Aylwyn Scally et al.Mar 1, 2012
Gorillas are humans’ closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human–chimpanzee and human–chimpanzee–gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution. The genome of a western lowland gorilla has been sequenced and analysed, completing the genome sequences of all great ape genera, and providing evidence for parallel accelerated evolution in chimpanzee, gorilla and human lineages at a number of loci. The genome of the gorilla has been sequenced, making it possible to compare the DNA of the four surviving hominid genera: human, chimpanzee, gorilla and orang-utan. The data — mainly from a female western lowland gorilla named Kamilah, but also from other gorillas representing both the western lowland and eastern lowland sub-species — imply that in almost one-third of its genome, the gorilla is closer to the human or chimpanzee than the human and chimp are to each other. Around 500 genes show accelerated evolution in gorilla, human and chimpanzee lineages, and there is evidence for parallel acceleration, particularly in genes associated with hearing. On the basis of genetic and fossil evidence, the authors suggest that the human–chimpanzee and human–chimpanzee–gorilla speciation events occurred at around 6 million and 10 million years ago respectively, whereas the two gorilla species diverged around 1.75 million years ago.
0
Citation749
0
Save
0

Comparative and demographic analysis of orang-utan genomes

Devin Locke et al.Jan 25, 2011
The genome of the Southeast Asian great ape or orang-utan has been sequenced — specifically a draft assembly of a Sumatran female individual and short-read sequence data from five further Sumatran and five Bornean orang-utan, Pongo abelii and Pongo pygmaeus, respectively. Orang-utan species appear to have split around 400,000 years ago, more recent than most previous estimates suggested, resulting in an average Bornean–Sumatran nucleotide identity of 99.68%. Structural evolution of the orang-utan genome seems to have proceeded much more slowly than that of other great apes, including chimpanzees and humans. With both orang-utan species on the endangered list, the authors hope that knowledge of the genome sequence and its variation between populations will provide a valuable resource for conservationists. The genome of the southeast Asian orang-utan has been sequenced. The draft assembly of a Sumatran individual alongside sequence data from five Sumatran and five Bornean orang-utan genomes is presented. The resources and analyses described offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts. ‘Orang-utan’ is derived from a Malay term meaning ‘man of the forest’ and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal1, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000 years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (Ne) expanded exponentially relative to the ancestral Ne after the split, while Bornean Ne declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts.
0
Citation602
0
Save
0

A genomic history of Aboriginal Australia

Anna‐Sapfo Malaspinas et al.Sep 20, 2016
The population history of Aboriginal Australians remains largely uncharacterized. Here we generate high-coverage genomes for 83 Aboriginal Australians (speakers of Pama–Nyungan languages) and 25 Papuans from the New Guinea Highlands. We find that Papuan and Aboriginal Australian ancestors diversified 25–40 thousand years ago (kya), suggesting pre-Holocene population structure in the ancient continent of Sahul (Australia, New Guinea and Tasmania). However, all of the studied Aboriginal Australians descend from a single founding population that differentiated ~10–32 kya. We infer a population expansion in northeast Australia during the Holocene epoch (past 10,000 years) associated with limited gene flow from this region to the rest of Australia, consistent with the spread of the Pama–Nyungan languages. We estimate that Aboriginal Australians and Papuans diverged from Eurasians 51–72 kya, following a single out-of-Africa dispersal, and subsequently admixed with archaic populations. Finally, we report evidence of selection in Aboriginal Australians potentially associated with living in the desert. Whole-genome sequence data for 108 individuals representing 28 language groups across Australia and five language groups for Papua New Guinea suggests that Aboriginal Australians and Papuans diverged from Eurasian populations approximately 60–100 thousand years ago, following a single out-of-Africa dispersal and subsequent admixture with archaic populations. Three international collaborations reporting in this issue of Nature describe 787 high-quality genomes from individuals from geographically diverse populations. David Reich and colleagues analysed whole-genome sequences of 300 individuals from 142 populations. Their findings include an accelerated estimated rate of accumulation of mutations in non-Africans compared to Africans since divergence, and that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans but from the same source as that of other non-Africans. Eske Willerlsev and colleagues obtained whole-genome data for 83 Aboriginal Australians and 25 Papuans from the New Guinea Highlands. They estimate that Aboriginal Australians and Papuans diverged from Eurasian populations 51,000–72,000 years ago, following a single out-of-Africa dispersal. Luca Pagani et al. report on a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations. Their analyses support the model by which all non-African populations derive most of their genetic ancestry from a single recent migration out of Africa, although a Papuan contribution suggests a trace of an earlier human expansion.
0
Citation563
0
Save
0

The bonobo genome compared with the chimpanzee and human genomes

Kay Prüfer et al.Jun 1, 2012
Sequencing of the bonobo genome shows that more than three per cent of the human genome is more closely related to either the bonobo genome or the chimpanzee genome than those genomes are to each other. The chimpanzee and the bonobo are our species' two closest living relatives. This paper reports the genome sequence of the bonobo, the last ape to be sequenced. Comparative genomic analyses reveal that more than 3% of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. The results shed light on the ancestry of the two ape species and might eventually help us to understand the genetic basis of phenotypes that humans share with one or the other ape species. Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours1,2,3,4, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other.
0
Citation537
0
Save
0

Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change

Webb Miller et al.Jul 23, 2012
Polar bears (PBs) are superbly adapted to the extreme Arctic environment and have become emblematic of the threat to biodiversity from global climate change. Their divergence from the lower-latitude brown bear provides a textbook example of rapid evolution of distinct phenotypes. However, limited mitochondrial and nuclear DNA evidence conflicts in the timing of PB origin as well as placement of the species within versus sister to the brown bear lineage. We gathered extensive genomic sequence data from contemporary polar, brown, and American black bear samples, in addition to a 130,000- to 110,000-y old PB, to examine this problem from a genome-wide perspective. Nuclear DNA markers reflect a species tree consistent with expectation, showing polar and brown bears to be sister species. However, for the enigmatic brown bears native to Alaska's Alexander Archipelago, we estimate that not only their mitochondrial genome, but also 5-10% of their nuclear genome, is most closely related to PBs, indicating ancient admixture between the two species. Explicit admixture analyses are consistent with ancient splits among PBs, brown bears and black bears that were later followed by occasional admixture. We also provide paleodemographic estimates that suggest bear evolution has tracked key climate events, and that PB in particular experienced a prolonged and dramatic decline in its effective population size during the last ca. 500,000 years. We demonstrate that brown bears and PBs have had sufficiently independent evolutionary histories over the last 4-5 million years to leave imprints in the PB nuclear genome that likely are associated with ecological adaptation to the Arctic environment.
0
Citation346
0
Save
0

Genomic Relationships and Speciation Times of Human, Chimpanzee, and Gorilla Inferred from a Coalescent Hidden Markov Model

Asger Hobolth et al.Feb 20, 2007
The genealogical relationship of human, chimpanzee, and gorilla varies along the genome. We develop a hidden Markov model (HMM) that incorporates this variation and relate the model parameters to population genetics quantities such as speciation times and ancestral population sizes. Our HMM is an analytically tractable approximation to the coalescent process with recombination, and in simulations we see no apparent bias in the HMM estimates. We apply the HMM to four autosomal contiguous human-chimp-gorilla-orangutan alignments comprising a total of 1.9 million base pairs. We find a very recent speciation time of human-chimp (4.1 +/- 0.4 million years), and fairly large ancestral effective population sizes (65,000 +/- 30,000 for the human-chimp ancestor and 45,000 +/- 10,000 for the human-chimp-gorilla ancestor). Furthermore, around 50% of the human genome coalesces with chimpanzee after speciation with gorilla. We also consider 250,000 base pairs of X-chromosome alignments and find an effective population size much smaller than 75% of the autosomal effective population sizes. Finally, we find that the rate of transitions between different genealogies correlates well with the region-wide present-day human recombination rate, but does not correlate with the fine-scale recombination rates and recombination hot spots, suggesting that the latter are evolutionarily transient.
0
Citation338
0
Save
0

Ohana, a tool set for population genetic analyses of admixture components

Jade Cheng et al.Aug 23, 2016
Abstract Motivation Structure methods are highly used population genetic methods for classifying individuals in a sample fractionally into discrete ancestry components. Contribution We introduce a new optimization algorithm of the classical Structure model in a maximum likelihood framework. Using analyses of real data we show that the new optimization algorithm finds higher likelihood values than the state-of-the-art method in the same computational time. We also present a new method for estimating population trees from ancestry components using a Gaussian approximation. Using coalescence simulations modeling populations evolving in a tree-like fashion, we explore the adequacy of the Structure model and the Gaussian assumption for identifying ancestry components correctly and for inferring the correct tree. In most cases, ancestry components are inferred correctly, although sample sizes and times since admixture can influence the inferences. Similarly, the popular Gaussian approximation tends to perform poorly when branch lengths are long, although the tree topology is correctly inferred in all scenarios explored. The new methods are implemented together with appropriate visualization tools in the computer package Ohana. Availability Ohana is publicly available at https://github.com/jade-cheng/ohana . Besides its source code and installation instructions, we also provide example workflows in the project wiki site. Contact jade.cheng@birc.au.dk
0
Citation5
0
Save
37

Bayesian inference of admixture graphs on Native American and Arctic populations

Svend Nielsen et al.Sep 6, 2022
Abstract Admixture graphs are mathematical structures that describe the ancestry of populations in terms of divergence and merging (admixing) of ancestral populations as a graph. An admixture graph consists of a graph topology, branch lengths, and admixture proportions. The branch lengths and admixture proportions can be estimated using numerous numerical optimization methods, but inferring the topology involves a combinatorial search for which no polynomial algorithm is known. In this paper, we present a reversible jump MCMC algorithm for sampling high-probability admixture graphs and show that this approach works well both as a heuristic search for a single best-fitting graph and for summarizing shared features extracted from posterior samples of graphs. We apply the method to 11 Native American and Siberian populations and exploit the shared structure of high-probability graphs to address the relationship between Saqqaq, Inuit, Koryaks, and Athabascans. Our analyses show that the Saqqaq is not a good proxy for the previously identified gene flow from Arctic people into the Na-Dene speaking Athabascans. Author Summary One way of summarizing historical relationships between genetic samples is by constructing an admixture graph. An admixture graph describes the demographic history of a set of populations as a directed acyclic graph representing population splits and mergers. The inference of admixture graphs is currently done via greedy search algorithms that may fail to find the global optimum. We here improve on these approaches by developing a novel MCMC sampling method, AdmixtureBayes , that can sample from the posterior distribution of admixture graphs. This enables an efficient search of the entire state space as well as the ability to report a level of confidence in the sampled graphs. We apply AdmixtureBayes to a set of Native American and Arctic genomes to reconstruct the demographic history of these populations and report posterior probabilities of specific admixture events. While some previous studies have identified the ancient Saqqaq culture as a source of introgression into Athabascans, we instead find that it is the Siberian Koryak population, not the Saqqaq, that serves as the best proxy for gene flow into Athabascans.
37
Citation1
0
Save
20

Insights into bear evolution from a Pleistocene polar bear genome

Tianying Lan et al.Dec 12, 2021
Abstract The polar bear ( Ursus maritimus ) has become a symbol of the threat to biodiversity from climate change. Understanding polar bear evolutionary history may provide insights into apex carnivore responses and prospects during periods of extreme environmental perturbations. In recent years, genomic studies have examined bear speciation and population history, including evidence for ancient admixture between polar bears and brown bears ( Ursus arctos ). Here, we extend our earlier studies of a 130,000–115,000-year-old polar bear from the Svalbard Archipelago using a 10X coverage genome sequence and ten new genomes of polar and brown bears from contemporary zones of overlap in northern Alaska. We demonstrate a dramatic decline in effective population size for this ancient polar bear’s lineage, followed by a modest increase just before its demise. A slightly higher genetic diversity in the ancient polar bear suggests a severe genetic erosion over a prolonged bottleneck in modern polar bears. Statistical fitting of data to alternative admixture graph scenarios favors at least one ancient introgression event from brown bears into the ancestor of polar bears, possibly dating back over 150,000 years. Gene flow was likely bidirectional, but allelic transfer from brown into polar bear is the strongest detected signal, which contrasts with other published works. These findings may have implications for our understanding of climate change impacts: polar bears, a specialist Arctic lineage, may not only have undergone severe genetic bottlenecks, but also been the recipient of generalist, boreal genetic variants from brown bear during critical phases of Northern Hemisphere glacial oscillations. Significance Interspecific hybridization is a widespread phenomenon, but measuring its extent, directionality, and adaptive importance remains challenging. Ancient genomes, however, can help illuminate the history of modern organisms. Here, we present a genome retrieved from a 130,000–115,000-year-old polar bear and perform genome analyses of modern polar and brown bears throughout their geographic range. We find that the principal direction of ancient allele sharing was from brown bear into polar bear, although gene flow between them has likely been bidirectional. This inverts the current paradigm of unidirectional gene flow from polar into brown bear, and it suggests that polar bears were recipients of external genetic variation prior to their extensive population decline.
20
Citation1
0
Save
Load More