CP
Carlos Portera‐Cailliau
Author with expertise in Autism Spectrum Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(64% Open Access)
Cited by:
1,235
h-index:
44
/
i10-index:
62
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa.

Carlos Portera‐Cailliau et al.Feb 1, 1994
R
J
C
C
Retinitis pigmentosa (RP) is a group of inherited human diseases in which photoreceptor degeneration leads to visual loss and eventually to blindness. Although mutations in the rhodopsin, peripherin, and cGMP phosphodiesterase genes have been identified in some forms of RP, it remains to be determined whether these mutations lead to photoreceptor cell death through necrotic or apoptotic mechanisms. In this paper, we report a test of the hypothesis that photoreceptor cell death occurs by an apoptotic mechanism in three mouse models of RP: retinal degeneration slow (rds) caused by a peripherin mutation, retinal degeneration (rd) caused by a defect in cGMP phosphodiesterase, and transgenic mice carrying a rhodopsin Q344ter mutation responsible for autosomal dominant RP. Two complementary techniques were used to detect apoptosis-specific internucleosomal DNA fragmentation: agarose gel electrophoresis and in situ labeling of apoptotic cells by terminal dUTP nick end labeling. Both methods showed extensive apoptosis of photoreceptors in all three mouse models of retinal degeneration. We also show that apoptotic death occurs in the retina during normal development, suggesting that different mechanisms can cause photoreceptor death by activating an intrinsic death program in these cells. These findings raise the possibility that retinal degenerations may be slowed by interfering with the apoptotic mechanism itself.
0
Citation628
0
Save
0

Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models

Carlos Portera‐Cailliau et al.May 1, 1995
V
D
J
C
Huntington disease (HD) is an inherited neurodegenerative disorder characterized by selective death of striatal medium spiny neurons. Intrastriatal injections of glutamate receptor agonists (excitotoxins) recapitulate some neuropathological features of this disorder. Although this model suggests that excitotoxic injury may be involved in HD, the exact mechanisms of cell death in HD and its models are unknown. The present study was designed to test the hypothesis that HD can develop via the activation of an apoptotic mechanism of cell death and to examine whether excitotoxic striatal lesions with quinolinic acid in rats represent accurate models of HD. To characterize cell death, we employed DNA electrophoresis, electron microscopy (EM), and the terminal transferase-mediated (TdT) deoxyuridine triphosphate (d-UTP)-biotin nick end labeling (TUNEL) method for the in situ detection of DNA strand breaks. In the neostriatum of individuals with HD, patterns of distribution of TUNEL-positive neurons and glia were reminiscent of those seen in apoptotic cell death during normal development of the nervous system; in the same areas, nonrandom DNA fragmentation was detected occasionally. Following excitotoxic injury of the rat striatum, internucleosomal DNA fragmentation (evidence of apoptosis) was seen at early time intervals and random DNA fragmentation (evidence of necrosis) at later time points. In addition, EM detected necrotic profiles of medium spiny neurons in the lesioned rats. In concert, these results suggest that apoptosis occurs in both HD and excitotoxic animal models and that apoptotic and necrotic mechanisms of neuronal death may occur simultaneously within individual dying cells in the excitotoxically injured brain. However, the distribution of dying neurons in the neostriatum, the degree of glial degeneration, and the involvement of striatofugal pathways are very different between HD and excitotoxically damaged striatum. The present study suggests that multiple methods should be employed for a proper characterization of neuronal cell death in vivo.
0
Paper
Citation604
0
Save
1

Improvement of sensory deficits in Fragile X mice by increasing cortical interneuron activity after the critical period

Nazim Kourdougli et al.May 18, 2022
+10
B
A
N
SUMMARY Changes in the function of inhibitory interneurons (INs) during cortical development could contribute to the pathophysiology of neurodevelopmental disorders. Using all-optical in vivo approaches in postnatal mouse somatosensory cortex (S1), we find that parvalbumin (PV) IN precursors are hypoactive and decoupled from excitatory neurons in Fmr1 −/− mice, a model of Fragile X Syndrome (FXS). This leads to a loss of PV-INs in both mice and humans with FXS. Increasing the activity of future PV-INs in neonatal Fmr1 −/− mice restores PV density and ameliorates transcriptional dysregulation in S1, but not circuit dysfunction. Critically, administering a novel allosteric modulator of Kv3.1 channels after the S1 critical period does rescue circuit dynamics and tactile defensiveness. Symptoms in FXS and related disorders could be mitigated by targeting PV-INs.
1
Citation3
0
Save
0

Beyond excitation/inhibition imbalance in multidimensional models of neural circuit changes in brain disorders

Cian O’Donnell et al.Nov 7, 2016
T
C
J
C
A leading theory holds that neurodevelopmental brain disorders arise from imbalances in excitatory and inhibitory (E/I) brain circuitry. However, it is unclear whether this one-dimensional model is rich enough to capture the multiple neural circuit alterations underlying brain disorders. Here we combined computational simulations with analysis of in vivo 2-photon Ca2+ imaging data from somatosensory cortex of Fmr1 knock-out (KO) mice, a model of Fragile-X Syndrome, to test the E/I imbalance theory. We found that: 1) The E/I imbalance model cannot account for joint alterations in the observed neural firing rates and correlations; 2) Neural circuit function is vastly more sensitive to changes in some cellular components over others; 3) The direction of circuit alterations in Fmr1 KO mice changes across development. These findings suggest that the basic E/I imbalance model should be updated to higher-dimensional models that can better capture the multidimensional computational functions of neural circuits.
0

Plasticity after cortical stroke involves potentiating responses of pre-existing circuits but not functional remapping to new circuits

William Zeiger et al.Nov 10, 2020
+3
S
M
W
Abstract Functional recovery after stroke is thought to be mediated by adaptive circuit plasticity, whereby surviving neurons assume the roles of those that died. This “remapping” hypothesis is based on human brain mapping studies showing apparent reorganization of cortical sensorimotor maps and animal studies documenting molecular and structural changes that could support circuit rewiring. However, definitive evidence of remapping is lacking, and other studies have suggested that maladaptive plasticity mechanisms, such as enhanced inhibition in peri-infarct cortex, might actually limit plasticity after stroke. Here we sought to directly test whether neurons can change their response selectivity after a stroke that destroys a single barrel (C1) within mouse primary somatosensory cortex. Using multimodal in vivo imaging approaches, including two-photon calcium imaging to longitudinally record sensory-evoked activity in peri-infarct cortex before and after stroke, we found no evidence to support the remapping hypothesis. In an attempt to promote plasticity via rehabilitation, we also tested the effects of forced use therapy by plucking all whiskers except the C1 whisker. Again, we failed to detect an increase in the number of C1 whisker-responsive neurons in surrounding barrels even 2 months after stroke. Instead, we found that forced use therapy potentiated sensory-evoked responses in a pool of surviving neurons that were already C1 whisker responsive by significantly increasing the reliability of their responses. Together, our results argue against the long-held theory of functional remapping after stroke, but support a plausible circuit-based mechanism for how rehabilitation may improve recovery of function.
0

A failure to discriminate social from non-social touch at the circuit level may underlie social avoidance in autism

Trishala Chari et al.Jun 19, 2024
C
J
A
T
ABSTRACT Social touch is critical for communication and to impart emotions and intentions. However, certain autistic individuals experience aversion to social touch, especially when it is unwanted. We used a novel social touch assay and Neuropixels probes to compare neural responses to social vs. non-social interactions in three relevant brain regions: vibrissal somatosensory cortex, tail of striatum, and basolateral amygdala. We find that wild type (WT) mice showed aversion to repeated presentations of an inanimate object but not of another mouse. Cortical neurons cared most about touch context (social vs. object) and showed a preference for social interactions, while striatal neurons changed their preference depending on whether mice could choose or not to interact. Amygdalar and striatal neurons were preferentially modulated by forced object touch, which was the most aversive. In contrast, the Fmr1 knockout (KO) model of autism found social and non-social interactions equally aversive and displayed more aversive facial expressions to social touch when it invaded their personal space. Importantly, when Fmr1 KO mice could choose to interact, neurons in all three regions did not discriminate social valence. Thus, a failure to differentially encode social from non-social stimuli at the circuit level may underlie social avoidance in autism.
8

Hypersensitivity to distractors in Fragile X syndrome from loss of modulation of cortical VIP interneurons

Noorhan Rahmatullah et al.Jan 3, 2023
+7
L
L
N
Attention deficit is one of the most prominent and disabling symptoms in Fragile X Syndrome (FXS). Hypersensitivity to sensory stimuli contributes to attention difficulties by overwhelming and/or distracting affected individuals, which disrupts activities of daily living at home and learning at school. We find that auditory or visual distractors selectively impair visual discrimination performance in both humans and mice with FXS, but not their typically developing controls. Vasoactive intestinal polypeptide (VIP) neurons were significantly modulated by incorrect responses in the post-stimulus period during early distractor trials in WT mice, consistent with their known role as 'error' signals. Strikingly, however, VIP cells from Fmr1-/- mice showed little modulation in error trials, and this correlated with their poor performance on the distractor task. Thus, VIP interneurons and their reduced modulatory influence on pyramidal cells, could be a potential therapeutic target for attentional difficulties in FXS.
0

EZcalcium: Open Source Toolbox for Analysis of Calcium Imaging Data

Daniel Cantu et al.Jan 2, 2020
+7
M
B
D
Fluorescence calcium imaging using a range of microscopy approaches, such as 2-photon excitation or head-mounted 'miniscopes', is one of the preferred methods to record neuronal activity and glial signals in various experimental settings, including acute brain slices, brain organoids, and behaving animals. Because changes in the fluorescence intensity of genetically encoded or chemical calcium indicators correlate with action potential firing in neurons, data analysis is based on inferring such spiking from changes in pixel intensity values across time within different regions of interest. However, the algorithms necessary to extract biologically relevant information from these fluorescent signals are complex and require significant expertise in programming to develop robust analysis pipelines. For decades, the only way to perform these analyses was for individual laboratories to write their own custom code. These routines were typically not well annotated and lacked intuitive graphical user interfaces (GUIs), which made it difficult for scientists in other laboratories to adopt them. Although the panorama is changing with recent tools like CaImAn, Suite2P and others, there is still a barrier for many laboratories to adopt these packages, especially for potential users without sophisticated programming skills. As 2-photon microscopes are becoming increasingly affordable, the bottleneck is no longer the hardware, but the software used to analyze the calcium data in an optimal manner and consistently across different groups. We addressed this unmet need by incorporating recent software solutions for motion correction, segmentation, signal extraction and deconvolution of calcium imaging data into an open-source, easy to use, GUI-based, intuitive and automated data analysis software, which we named EZcalcium.
12

A novel head-fixed assay for social touch in mice uncovers aversive responses in two autism models

Trishala Chari et al.Jan 13, 2023
C
A
T
Social touch, an important aspect of social interaction and communication, is essential to kinship across animal species. How animals experience and respond to social touch has not been thoroughly investigated, in part due to the lack of appropriate assays. Previous studies that examined social touch in freely moving rodents lacked the necessary temporal and spatial control over individual touch interactions. We designed a novel head-fixed assay for social touch in mice, in which the experimenter has complete control to elicit highly stereotyped bouts of social touch between two animals. The user determines the number, duration, context, and type of social touch interactions, while monitoring with high frame rate cameras an array of complex behavioral responses. We focused on social touch to the face because of their high translational relevance to humans. We validated this assay in two different models of autism spectrum disorder (ASD), the Fmr1 knockout model of Fragile X Syndrome and maternal immune activation mice. We observed increased avoidance, hyperarousal, and more aversive facial expressions to social touch, but not to object touch, in both ASD models compared to controls. Because this new social touch assay for head-fixed mice can be used to record neural activity during repeated bouts of social touch it should be of interest to neuroscientists interested in uncovering the underlying circuits.
0

The population tracking model: A simple, scalable statistical model for neural population data

Cian O’Donnell et al.Jul 19, 2016
+2
N
J
C
Our understanding of neural population coding has been limited by a lack of analysis methods to characterize spiking data from large populations. The biggest challenge comes from the fact that the number of possible network activity patterns scales exponentially with the number of neurons recorded (2^Neurons). Here we introduce a new statistical method for characterizing neural population activity that requires semi-independent fitting of only as many parameters as the square of the number of neurons, so requiring drastically smaller data sets and minimal computation time. The model works by matching the population rate (the number of neurons synchronously active) and the probability that each individual neuron fires given the population rate. We found that this model can accurately fit synthetic data from up to 1000 neurons. We also found that the model could rapidly decode visual stimuli from neural population data from macaque primary visual cortex, ~65 ms after stimulus onset. Finally, we used the model to estimate the entropy of neural population activity in developing mouse somatosensory cortex and surprisingly found that it first increases, then decreases during development. This statistical model opens new options for interrogating neural population data, and can bolster the use of modern large-scale in vivo Ca2+ and voltage imaging tools.
Load More