MS
Morten Sørlie
Author with expertise in Technologies for Biofuel Production from Biomass
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
2,056
h-index:
42
/
i10-index:
106
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions

Finn Aachmann et al.Oct 29, 2012
Lytic polysaccharide monooxygenases currently classified as carbohydrate binding module family 33 (CBM33) and glycoside hydrolase family 61 (GH61) are likely to play important roles in future biorefining. However, the molecular basis of their unprecedented catalytic activity remains largely unknown. We have used NMR techniques and isothermal titration calorimetry to address structural and functional aspects of CBP21, a chitin-active CBM33. NMR structural and relaxation studies showed that CBP21 is a compact and rigid molecule, and the only exception is the catalytic metal binding site. NMR data further showed that His28 and His114 in the catalytic center bind a variety of divalent metal ions with a clear preference for Cu 2+ ( K d = 55 nM; from isothermal titration calorimetry) and higher preference for Cu 1+ ( K d ∼ 1 nM; from the experimentally determined redox potential for CBP21-Cu 2+ of 275 mV using a thermodynamic cycle). Strong binding of Cu 1+ was also reflected in a reduction in the p K a values of the histidines by 3.6 and 2.2 pH units, respectively. Cyanide, a mimic of molecular oxygen, was found to bind to the metal ion only. These data support a model where copper is reduced on the enzyme by an externally provided electron and followed by oxygen binding and activation by internal electron transfer. Interactions of CBP21 with a crystalline substrate were mapped in a 2 H/ 1 H exchange experiment, which showed that substrate binding involves an extended planar binding surface, including the metal binding site. Such a planar catalytic surface seems well-suited to interact with crystalline substrates.
0
Paper
Citation260
0
Save
6

Transkingdom mechanism of MAMP generation by chitotriosidase (CHIT1) feeds oligomeric chitin from fungal pathogens and allergens into TLR2-mediated innate immune sensing

Tzu-Hsuan Chang et al.Feb 19, 2022
Abstract Chitin is a highly abundant polysaccharide in nature and linked to immune recognition of fungal infections and asthma in humans. Ubiquitous in fungi and insects, chitin is absent in mammals and plants and, thus, represents a microbe-associated molecular pattern (MAMP). However, the highly polymeric chitin is insoluble, which potentially hampers recognition by host immune sensors. In plants, secreted chitinases degrade polymeric chitin into diffusible oligomers, which are ‘fed to’ innate immune receptors and co-receptors. In human and murine immune cells, a similar enzymatic activity was shown for human chitotriosidase (CHIT1) and oligomeric chitin is sensed via an innate immune receptor, Toll-like receptor (TLR) 2. However, a complete system of generating MAMPs from chitin and feeding them into a specific receptor/co-receptor-aided sensing mechanism has remained unknown in mammals. Here, we show that the secreted chitinolytic host enzyme, CHIT1, converts inert polymeric chitin into diffusible oligomers that can be sensed by TLR1-TLR2 co-receptor/receptor heterodimers, a process promoted by the lipopolysaccharide binding protein (LBP) and CD14. Furthermore, we observed that Chit1 is induced via the β-glucan receptor Dectin-1 upon direct contact of immortalized human macrophages to the fungal pathogen Candida albicans , whereas the defined fungal secreted aspartyl proteases, Sap2 and Sap6, from C. albicans were able to degrade CHIT1 in vitro. Our study shows the existence of an inducible system of MAMP generation in the human host that enables contact-independent immune activation by diffusible MAMP ligands with striking similarity to the plant kingdom. Moreover, this study highlights CHIT1 as a potential therapeutic target for TLR2-mediated inflammatory processes that are fueled by oligomeric chitin.
6
Citation3
0
Save