MM
Mite Mijalkov
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
218
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

BRAPH: A graph theory software for the analysis of brain connectivity

Mite Mijalkov et al.Aug 1, 2017
The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH–BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer's disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson's patients with mild cognitive impairment.
15

Age-related differences in network structure and dynamic synchrony of cognitive control

Thomas Hinault et al.Oct 10, 2020
Abstract Cognitive trajectories vary greatly across older individuals, and the neural mechanisms underlying these differences remain poorly understood. Here, we propose a mechanistic framework of cognitive variability in older adults, linking the influence of white matter microstructure on fast and effective communications between brain regions. Using diffusion tensor imaging and electroencephalography, we show that individual differences in white matter network organization are associated with network clustering and efficiency in the alpha and high-gamma bands, and that functional network dynamics partly explain individual cognitive control performance in older adults. We show that older individuals with high versus low structural network clustering differ in task-related network dynamics and cognitive performance. These findings were corroborated by investigating magnetoencephalography networks in an independent dataset. This multimodal brain connectivity framework of individual differences provides a holistic account of how differences in white matter microstructure underlie age-related variability in dynamic network organization and cognitive performance.
2

Directed brain connectivity identifies widespread functional network changes in Parkinson’s disease

Mite Mijalkov et al.Jan 4, 2021
Abstract Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by topological changes in large-scale functional brain networks. These networks are commonly analysed using undirected correlations between the activation signals of brain regions. However, this approach suffers from an important drawback: it assumes that brain regions get activated at the same time, despite previous evidence showing that brain activation features causality, with signals being typically generated in one region and then propagated to other ones. Thus, in order to address this limitation, in this study we developed a new method to assess whole-brain directed functional connectivity in patients with PD and healthy controls using anti-symmetric delayed correlations, which capture better this underlying causality. To test the potential of this new method, we compared it to standard connectivity analyses based on undirected correlations. Our results show that whole-brain directed connectivity identifies widespread changes in the functional networks of PD patients compared to controls, in contrast to undirected methods. These changes are characterized by increased global efficiency, clustering and transitivity as well as lower modularity. In addition, changes in the directed connectivity patterns in the precuneus, thalamus and superior frontal gyrus were associated with motor, executive and memory deficits in PD patients. Altogether, these findings suggest that directional brain connectivity is more sensitive to functional network changes occurring in PD compared to standard methods. This opens new opportunities for the analysis of brain connectivity and the development of new brain connectivity markers to track PD progression.
2
Citation1
0
Save
0

BRAPH: A Graph Theory Software for the Analysis of Brain Connectivity

Mite Mijalkov et al.Feb 7, 2017
The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH - BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer's disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson's patients with mild cognitive impairment.
1

Linking structural and functional changes during aging using multilayer brain network analysis

Gwendolyn Jauny et al.Feb 15, 2023
Abstract Brain structure and function are intimately linked, however this association remains poorly understood of the complexity of this relationship has remained understudied. Healthy aging is characterized by heterogenous levels of structural integrity changes that influence functional network dynamics. Here, we used the multilayer brain network analysis on structural (diffusion tensor imaging) and functional (magnetoencephalography) data from the Cam-CAN database. We found that the level of similarity of connectivity patterns between brain structure and function in the parietal and temporal regions (alpha frequency band) was associated with cognitive performance in healthy older individuals. These results highlight the impact of structural connectivity changes on the reorganisation of functional connectivity associated with the preservation of cognitive function, and provide a mechanistic understanding of the concepts of brain maintenance and compensation with aging. Investigation of the link between structure and function could thus represent a new marker of individual variability, and of pathological changes.