LS
Luis Soenksen
Author with expertise in Origins and Future of Microfluidics
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(44% Open Access)
Cited by:
1,364
h-index:
15
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Interconnected Microphysiological Systems for Quantitative Biology and Pharmacology Studies

Collin Edington et al.Mar 8, 2018
Microphysiological systems (MPSs) are in vitro models that capture facets of in vivo organ function through use of specialized culture microenvironments, including 3D matrices and microperfusion. Here, we report an approach to co-culture multiple different MPSs linked together physiologically on re-useable, open-system microfluidic platforms that are compatible with the quantitative study of a range of compounds, including lipophilic drugs. We describe three different platform designs - "4-way", "7-way", and "10-way" - each accommodating a mixing chamber and up to 4, 7, or 10 MPSs. Platforms accommodate multiple different MPS flow configurations, each with internal re-circulation to enhance molecular exchange, and feature on-board pneumatically-driven pumps with independently programmable flow rates to provide precise control over both intra- and inter-MPS flow partitioning and drug distribution. We first developed a 4-MPS system, showing accurate prediction of secreted liver protein distribution and 2-week maintenance of phenotypic markers. We then developed 7-MPS and 10-MPS platforms, demonstrating reliable, robust operation and maintenance of MPS phenotypic function for 3 weeks (7-way) and 4 weeks (10-way) of continuous interaction, as well as PK analysis of diclofenac metabolism. This study illustrates several generalizable design and operational principles for implementing multi-MPS "physiome-on-a-chip" approaches in drug discovery.
0

Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensing

Luis Soenksen et al.Nov 17, 2017
Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (<1mL) has proven to be an elusive goal, especially if direct fluid-sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (~250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications.
0

PiFlow: A Biocompatible Low-Cost Programmable Dynamic Flow Pumping System Utilizing a Raspberry Pi Zero and Commercial Piezoelectric Pumps

Timothy Kassis et al.Sep 22, 2017
With the rise of research utilizing microphysiological systems (MPSs), the need for tools that enable the physiological mimicking of the relevant cellular environment is vital. The limited ability to reproduce crucial features of the microenvironment, such as surrounding fluid flow and dynamic changes in biochemical stimuli, severely limits the types of experiments that can be carried out. Current equipment to achieve this, such as syringe and peristaltic pumps, is expensive, large, difficult to program and has limited potential for scalability. Here, we present a new pumping platform that is open-source, low-cost, modular, scalable, fully-programmable and easy to assemble that can be incorporated into cell culture systems to better recapitulate physiological environments. By controlling two commercially available piezoelectric pumps using a Raspberry Pi Zero microcontroller, the system is capable of producing arbitrary dynamic flow profiles with reliable flow rates ranging from 1 to 3,000 μL/min as specified by an easily programmable Python-based script. We validated the accuracy of the flow rates, the use of time-varying profiles, and the practicality of the system by creating repeatable dynamic concentration profiles using a 3D-printed static micromixer.