MS
Martijn Selten
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
11
h-index:
11
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
14

Cadherin-13 is a critical regulator of GABAergic modulation in human stem cell derived neuronal networks

Britt Mossink et al.May 7, 2020
+15
K
E
B
Summary Activity in the healthy brain relies on concerted interplay of excitation (E) and inhibition (I) via balanced synaptic communication between glutamatergic and GABAergic neurons. A growing number of studies imply that disruption of this E/I balance is a commonality in many brain disorders, however, obtaining mechanistic insight into these disruptions, with translational value for the human patient, has typically been hampered by methodological limitations. Cadherin-13 ( CDH13 ) has strongly been associated to attention-deficit/hyperactivity disorder and comorbid disorders such as autism and schizophrenia. CDH13 localises at inhibitory presynapses, specifically of parvalbumin (PV) and somatostatin (SST) expressing GABAergic neurons. However, the mechanism by which CDH13 regulates the function of inhibitory synapses in human neurons remains unknown. Starting from human induced pluripotent stem cells, we established a robust method to generate a homogenous population of SST and PV expressing GABAergic neurons (iGABA) in vitro , and co-cultured these with glutamatergic neurons at defined E/I ratios on micro-electrode arrays. We identified functional network parameters that are most reliably affected by GABAergic modulation as such, and through alterations of E/I balance by reduced expression of CDH13 in iGABAs. We found that CDH13-deficiency in iGABAs decreased E/I balance by means of increased inhibition. Moreover, CDH13 interacts with Integrin-β1 and Integrin-β3, which play opposite roles in the regulation of inhibitory synaptic strength via this interaction. Taken together, this model allows for standardized investigation of the E/I balance in a human neuronal background and can be deployed to dissect the cell-type specific contribution of disease genes to the E/I balance.
14
Citation8
0
Save
1

Cortical wiring by synapse-specific control of local protein synthesis

C. Bernard et al.Nov 13, 2021
+6
M
D
C
Neurons use local protein synthesis as a mechanism to support their morphological complexity, which requires independent control across multiple subcellular compartments including individual synapses. However, to what extent local translation is differentially regulated at the level of specific synaptic connections remains largely unknown. Here, we identify a signaling pathway that regulates the local synthesis of proteins required for the formation of excitatory synapses on parvalbumin-expressing (PV + ) interneurons in the mouse cerebral cortex. This process involves the regulation of the mTORC1 inhibitor Tsc2 by the receptor tyrosine kinase ErbB4, which enables the local control of mRNA translation in a cell type-specific and synapse-specific manner. Ribosome-associated mRNA profiling reveals a molecular program of synaptic proteins that regulates the formation of excitatory inputs on PV + interneurons downstream of ErbB4 signaling. Our work demonstrates that local protein translation is regulated at the level of specific connections to control synapse formation in the nervous system.
1
Citation2
0
Save
65

Regulation of parvalbumin interneuron plasticity by neuropeptide-encoding genes

Martijn Selten et al.Feb 4, 2023
+4
F
C
M
Abstract Neuronal activity is regulated in a narrow permissive band for the proper operation of neural networks. Changes in synaptic connectivity and network activity, for example, during learning, might disturb this balance, eliciting compensatory mechanisms to maintain network function. In the neocortex, excitatory pyramidal cells and inhibitory interneurons exhibit robust forms of stabilising plasticity. However, while neuronal plasticity has been thoroughly studied in pyramidal cells, little is known about how interneurons adapt to persistent changes in their activity. Here we uncover the critical cellular and molecular mechanisms through which cortical parvalbumin-expressing (PV+) interneurons adapt to changes in their activity levels. We found that changes in the activity of PV+ interneurons drive cell-autonomous, bi-directional compensatory adjustments of the number and strength of inhibitory synapses received by these cells, specifically from other PV+ interneurons. High-throughput profiling of ribosome-associated mRNA revealed that increasing the activity of PV+ interneurons leads to the cell-autonomous upregulation of two genes encoding multiple secreted neuropeptides, Vgf and Scg2 . Functional experiments demonstrated that VGF is critically required for the activity-dependent scaling of inhibitory PV+ synapses onto PV+ interneurons. Our findings reveal an instructive role for neuropeptide-encoding genes in regulating synaptic connections among PV+ interneurons in the adult mouse neocortex.
65
Citation1
0
Save
0

Distinct pathogenic genes causing intellectual disability and autism exhibit overlapping effects on neuronal network development

Monica Frega et al.Sep 5, 2018
+14
B
M
M
Neuronal gene transcription through epigenetic modifications plays an important role in the etiology of intellectual disability (ID) and autism spectrum disorders (ASD). Haploinsufficiency of the Euchromatin Histone Methyltransferase 1 (EHMT1) gene causes Kleefstra syndrome, a neurodevelopmental disorder with the clinical features of both ID and ASD. Interestingly, patients with loss-of-function mutations in the functionally distinct epigenetic regulators MBD5, MLL3 or SMARCB1 also share the same core features, referred to as the Kleefstra syndrome spectrum (KSS). Currently, little is known about how variants in these different chromatin remodelers lead to the phenotypic convergence in KSS. To decipher the pathophysiology underlying KSS we here directly compared the effect of loss of function of four distinct KSS genes in developing rodent neuronal networks, using a combination of transcriptional analysis, immunocytochemistry, single-cell recordings and micro-electrode arrays. KSS gene-deficient neuronal networks all showed impaired neural network activity, resulting in hyperactive networks with altered network organization. At the single-cell level, we found genotype-specific changes in intrinsic excitability and in excitatory-inhibitory balance, all leading to increased excitability. These findings we could also recapitulate in a mouse model for Kleefstra syndrome. Transcriptional analysis further revealed distinct regulatory mechanisms. Nevertheless, KSS-target genes share similar functions in regulating neuronal excitability and synaptic function, several of which are associated with ID and ASD. Our results show that KSS genes mainly converge at the level of neuronal network development, providing new insights into the pathophysiology of KSS and to other phenotypically congruent disorders involving ID and autism.