KS
Kathrin Saar
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
3,334
h-index:
46
/
i10-index:
72
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing

Wei Guo et al.Apr 1, 2012
Alternative splicing affects the function of many cardiac proteins, including that of the sarcomeric protein titin. Wei Guo et al. now show that the gene RBM20, previously identified as mutated in some individuals with dilated cardiomyopathy, is a splicing factor that regulates the alternative splicing of the gene encoding titin and many other key cardiac genes. Alternative splicing has a major role in cardiac adaptive responses, as exemplified by the isoform switch of the sarcomeric protein titin, which adjusts ventricular filling. By positional cloning using a previously characterized rat strain with altered titin mRNA splicing, we identified a loss-of-function mutation in the gene encoding RNA binding motif protein 20 (Rbm20) as the underlying cause of pathological titin isoform expression. The phenotype of Rbm20-deficient rats resembled the pathology seen in individuals with dilated cardiomyopathy caused by RBM20 mutations. Deep sequencing of the human and rat cardiac transcriptome revealed an RBM20-dependent regulation of alternative splicing. In addition to titin (TTN), we identified a set of 30 genes with conserved splicing regulation between humans and rats. This network is enriched for genes that have previously been linked to cardiomyopathy, ion homeostasis and sarcomere biology. Our studies emphasize the key role of post-transcriptional regulation in cardiac function and provide mechanistic insights into the pathogenesis of human heart failure.
0
Citation505
0
Save
0

IL-11 is a crucial determinant of cardiovascular fibrosis

Sebastian Schäfer et al.Nov 13, 2017
Fibroblast-specific Il-11 expression causes heart and kidney fibrosis and organ failure, whereas IL-11 inhibition prevents fibroblast activation and organ fibrosis, indicating that IL-11 inhibition is a potential therapeutic strategy to treat fibrotic diseases. Fibrosis—the overproduction of fibrous connective tissue—is a feature of many diseases and can contribute to pathology by causing scarring, thickening of tissue and interference with normal organ function. In the heart, fibrosis can cause mechanical and electrical dysfunction. Stuart Cook and colleagues identify a protein that has a crucial role in cardiac fibrosis: the cytokine IL-11. They find that, in primary human cardiac fibroblasts, transcription of IL-11 is a dominant response to transforming growth factor beta (TGFβ) exposure and that it is required for the pro-fibrotic effect of TGFβ. Loss of IL-11 reduced fibrosis in three preclinical models of cardiovascular fibrosis, leading the authors to propose IL-11 as a therapeutic target. Fibrosis is a common pathology in cardiovascular disease1. In the heart, fibrosis causes mechanical and electrical dysfunction1,2 and in the kidney, it predicts the onset of renal failure3. Transforming growth factor β1 (TGFβ1) is the principal pro-fibrotic factor4,5, but its inhibition is associated with side effects due to its pleiotropic roles6,7. We hypothesized that downstream effectors of TGFβ1 in fibroblasts could be attractive therapeutic targets and lack upstream toxicity. Here we show, using integrated imaging–genomics analyses of primary human fibroblasts, that upregulation of interleukin-11 (IL-11) is the dominant transcriptional response to TGFβ1 exposure and required for its pro-fibrotic effect. IL-11 and its receptor (IL11RA) are expressed specifically in fibroblasts, in which they drive non-canonical, ERK-dependent autocrine signalling that is required for fibrogenic protein synthesis. In mice, fibroblast-specific Il11 transgene expression or Il-11 injection causes heart and kidney fibrosis and organ failure, whereas genetic deletion of Il11ra1 protects against disease. Therefore, inhibition of IL-11 prevents fibroblast activation across organs and species in response to a range of important pro-fibrotic stimuli. These results reveal a central role of IL-11 in fibrosis and we propose that inhibition of IL-11 is a potential therapeutic strategy to treat fibrotic diseases.
0
Citation491
0
Save
0

A prostaglandin alpha F2 analog protects from statin-induced myopathic changes in primary human muscle cells

Stefanie Grunwald et al.Feb 26, 2018
Statin-related muscle side effects are a constant healthcare problem since patient compliance is dependent on side effects. Statins reduce plasma cholesterol levels and can prevent secondary cardiovascular disease. Although statin-induced muscle damage has been studied, preventive or curative therapies are yet to be reported.We exposed primary human muscle cell populations (n=25) to a lipophilic (simvastatin) and a hydrophilic (rosuvastatin) statin and analyzed their expressome. Data and pathway analyses included GOrilla, Reactome and DAVID. We measured mevalonate intracellularly and analyzed eicosanoid profiles secreted by human muscle cells. Functional assays included proliferation and differentiation quantification.More than 1800 transcripts and 900 proteins were differentially expressed after exposure to statins. Simvastatin had a stronger effect on the expressome than rosuvastatin, but both statins influenced cholesterol biosynthesis, fatty acid metabolism, eicosanoid synthesis, proliferation, and differentiation of human muscle cells. Cultured human muscle cells secreted ω-3 and ω-6 derived eicosanoids and prostaglandins. The ω-6 derived metabolites were found at higher levels secreted from simvastatin-treated primary human muscle cells. Eicosanoids rescued muscle cell differentiation.Our data suggest a new aspect on the role of skeletal muscle in cholesterol metabolism. For clinical practice, the addition of omega-n fatty acids could be suitable to prevent or treat statin-myopathy.
1

Protective immune trajectories in early viral containment of non-pneumonic SARS-CoV-2 infection

Kami Pekayvaz et al.Feb 3, 2021
Abstract The immune system of most SARS-CoV-2 infected individuals limits viral spread to the upper airways without pulmonary involvement. This prevents the development of pneumonic COVID-19. However, the protective immunological responses causative of successful viral containment in the upper airways remain unclear. Here, we combine longitudinal single-cell RNA sequencing, proteomic profiling, multidimensional flow cytometry, RNA-Seq of FACS-sorted leukocyte subsets and multiplex plasma interferon profiling to uncover temporally resolved protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected patients. We compare host responses in a high-risk patient population infected with SARS-CoV-2 but without pulmonary involvement to patients with COVID-19 pneumonia. Our data reveal a distinct immunological signature of successful viral containment, characterized by an early prominent interferon stimulated gene (ISG) upregulation across immune cell subsets. In addition, reduced cytotoxic potential of Natural Killer (NK) and T cells, as well as a monocyte phenotype with immune-modulatory potential are hallmarks of protective immunity. Temporal resolution across disease trajectories highlights ISG upregulation as particularly prominent early in the disease and confirms increased expression also in comparison to healthy controls. We validate this distinct temporal ISG signature by in-depth RNA-seq of FACS-sorted leukocyte subsets in a large prospective ambulatory SARS-CoV-2 infected cohort confirming early and robust ISG upregulation particularly in monocytes and T cells. In conclusion, our data demonstrate a protective ISG phenotype in patients with successful containment of SARS-CoV-2 infection without progression to COVID-19. This early protective interferon response might be exploited as a therapeutic approach and for disease course prediction.