Sirtuin 1 (SIRT1) is a NAD-dependent deacetylase that is critically involved in diverse cellular processes including metabolic disease, cancer, and possibly aging. Despite extensive studies on SIRT1 function, how SIRT1 levels are regulated remains relatively unknown. Here, we report that the nuclear bile acid receptor farnesoid X receptor (FXR) inhibits microRNA-34a (miR-34a) in the liver, which results in a positive regulation of SIRT1 levels. Activation of FXR by the synthetic agonist GW4064 decreases hepatic miR-34a levels in normal mice, and consistently, hepatic miR-34a levels are elevated in FXR-null mice. FXR induces expression of small heterodimer partner (SHP), an orphan nuclear receptor and transcriptional corepressor, which in turn results in repression of p53, a key activator of the miR-34a gene, by inhibiting p53 occupancy at the promoter. MiR-34a decreased SIRT1 levels by binding to the 3′-untranslated region of SIRT1 mRNA, and adenovirus-mediated overexpression of miR-34a substantially decreased SIRT1 protein levels in mouse liver. Remarkably, miR-34a levels were elevated, and SIRT1 protein levels were reduced in diet-induced obese mice, and FXR activation in these mice reversed the miR-34a and SIRT1 levels, indicating an intriguing link among FXR activation, decreased miR-34a, and subsequently, increased SIRT1 levels. Our study demonstrates an unexpected role of the FXR/SHP pathway in controlling SIRT1 levels via miR-34a inhibition and that elevated miR-34a levels in obese mice contribute to decreased SIRT1 levels. Manipulation of this regulatory network may be useful for treating diseases of aging, such as metabolic disease and cancer. Sirtuin 1 (SIRT1) is a NAD-dependent deacetylase that is critically involved in diverse cellular processes including metabolic disease, cancer, and possibly aging. Despite extensive studies on SIRT1 function, how SIRT1 levels are regulated remains relatively unknown. Here, we report that the nuclear bile acid receptor farnesoid X receptor (FXR) inhibits microRNA-34a (miR-34a) in the liver, which results in a positive regulation of SIRT1 levels. Activation of FXR by the synthetic agonist GW4064 decreases hepatic miR-34a levels in normal mice, and consistently, hepatic miR-34a levels are elevated in FXR-null mice. FXR induces expression of small heterodimer partner (SHP), an orphan nuclear receptor and transcriptional corepressor, which in turn results in repression of p53, a key activator of the miR-34a gene, by inhibiting p53 occupancy at the promoter. MiR-34a decreased SIRT1 levels by binding to the 3′-untranslated region of SIRT1 mRNA, and adenovirus-mediated overexpression of miR-34a substantially decreased SIRT1 protein levels in mouse liver. Remarkably, miR-34a levels were elevated, and SIRT1 protein levels were reduced in diet-induced obese mice, and FXR activation in these mice reversed the miR-34a and SIRT1 levels, indicating an intriguing link among FXR activation, decreased miR-34a, and subsequently, increased SIRT1 levels. Our study demonstrates an unexpected role of the FXR/SHP pathway in controlling SIRT1 levels via miR-34a inhibition and that elevated miR-34a levels in obese mice contribute to decreased SIRT1 levels. Manipulation of this regulatory network may be useful for treating diseases of aging, such as metabolic disease and cancer. IntroductionThe NAD+-dependent Sirtuin 1 (SIRT1) 3The abbreviations used are: SIRT1Sirtuin 1PGC-1αperoxisome proliferator-activated receptor γ coactivator αFXRfarnesoid X receptorSHPsmall heterodimer partnermiRmicroRNA3′-UTR3′-untranslated regionHNF-4hepatic nuclear factor 4qRT-PCRreverse transcription-quantitative PCRAdadenovirusChIPchromatin immunoprecipitationGSTglutathione S-transferaseCoIPcoimmunoprecipitationsiRNAsmall interfering RNAlucluciferaseWDwestern style diet. deacetylase plays a critical role in cellular metabolism, the stress response, and possibly aging, by modulating the activity of its target proteins via protein deacetylation (1Rodgers J.T. Lerin C. Haas W. Gygi S.P. Spiegelman B.M. Puigserver P. Nature. 2005; 434: 113-118Crossref PubMed Scopus (2524) Google Scholar, 2Motta M.C. Divecha N. Lemieux M. Kamel C. Chen D. Gu W. Bultsma Y. McBurney M. Guarente L. Cell. 2004; 116: 551-563Abstract Full Text Full Text PDF PubMed Scopus (1184) Google Scholar, 3Luo J. Nikolaev A.Y. Imai S. Chen D. Su F. Shiloh A. Guarente L. Gu W. Cell. 2001; 107: 137-148Abstract Full Text Full Text PDF PubMed Scopus (1873) Google Scholar, 4Guarente L. Cold Spring Harb. Symp. Quant. Biol. 2007; 72: 483-488Crossref PubMed Scopus (285) Google Scholar). Recent studies demonstrate that SIRT1 plays an important role in maintaining metabolic homeostasis in response to hormonal and nutritional fluctuations by modulating the activity of PGC-1α, a master metabolic regulator (5Rodgers J.T. Puigserver P. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 12861-12866Crossref PubMed Scopus (444) Google Scholar, 6Rodgers J.T. Lerin C. Gerhart-Hines Z. Puigserver P. FEBS Lett. 2008; 582: 46-53Crossref PubMed Scopus (490) Google Scholar). During nutritional deprivation, SIRT1 promotes fat mobilization and suppresses adipogenesis and regulates hepatic glucose and lipid metabolism by activating key metabolic regulators, including PGC-1α (5Rodgers J.T. Puigserver P. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 12861-12866Crossref PubMed Scopus (444) Google Scholar, 6Rodgers J.T. Lerin C. Gerhart-Hines Z. Puigserver P. FEBS Lett. 2008; 582: 46-53Crossref PubMed Scopus (490) Google Scholar). Activation of SIRT1 by natural or synthetic SIRT1 activators reduced acetylation levels of PGC-1α and protected against diet-induced obesity and insulin resistance by promoting mitochondrial function (7Lagouge M. Argmann C. Gerhart-Hines Z. Meziane H. Lerin C. Daussin F. Messadeq N. Milne J. Lambert P. Elliott P. Geny B. Laakso M. Puigserver P. Auwerx J. Cell. 2006; 127: 1109-1122Abstract Full Text Full Text PDF PubMed Scopus (3267) Google Scholar, 8Baur J.A. Pearson K.J. Price N.L. Jamieson H.A. Lerin C. Kalra A. Prabhu V.V. Allard J.S. Lopez-Lluch G. Lewis K. Pistell P.J. Poosala S. Becker K.G. Boss O. Gwinn D. Wang M. Ramaswamy S. Fishbein K.W. Spencer R.G. Lakatta E.G. Le Couteur D. Shaw R.J. Navas P. Puigserver P. Ingram D.K. de Cabo R. Sinclair D.A. Nature. 2006; 444: 337-342Crossref PubMed Scopus (3619) Google Scholar, 9Feige J.N. Lagouge M. Canto C. Strehle A. Houten S.M. Milne J.C. Lambert P.D. Mataki C. Elliott P.J. Auwerx J. Cell Metab. 2008; 8: 347-358Abstract Full Text Full Text PDF PubMed Scopus (608) Google Scholar). SIRT1 levels are dynamically regulated in response to fasting and feeding under physiological conditions but markedly reduced in diet-induced obese mice (10Coste A. Louet J.F. Lagouge M. Lerin C. Antal M.C. Meziane H. Schoonjans K. Puigserver P. O'Malley B.W. Auwerx J. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 17187-17192Crossref PubMed Scopus (153) Google Scholar). However, the molecular basis by which SIRT1 levels are regulated under normal conditions and why they are substantially reduced in metabolic disease states remains largely unknown.The nuclear receptor, farnesoid X receptor (FXR), is the primary biosensor for endogenous bile acids and regulates expression of numerous genes involved in lipid and glucose metabolism (11Zhang Y. Lee F.Y. Barrera G. Lee H. Vales C. Gonzalez F.J. Willson T.M. Edwards P.A. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 1006-1011Crossref PubMed Scopus (696) Google Scholar, 12Sinal C.J. Tohkin M. Miyata M. Ward J.M. Lambert G. Gonzalez F.J. Cell. 2000; 102: 731-744Abstract Full Text Full Text PDF PubMed Scopus (1378) Google Scholar, 13Lee F.Y. Lee H. Hubbert M.L. Edwards P.A. Zhang Y. Trends Biochem. Sci. 2006; 31: 572-580Abstract Full Text Full Text PDF PubMed Scopus (274) Google Scholar, 14Fiorucci S. Rizzo G. Donini A. Distrutti E. Santucci L. Trends Mol. Med. 2007; 13: 298-309Abstract Full Text Full Text PDF PubMed Scopus (175) Google Scholar, 15Cariou B. Staels B. Trends Pharmacol. Sci. 2007; 28: 236-243Abstract Full Text Full Text PDF PubMed Scopus (118) Google Scholar). FXR indirectly inhibits its metabolic target genes by inducing the expression of small heterodimer partner (SHP), an orphan nuclear receptor and transcriptional corepressor (16Lu T.T. Makishima M. Repa J.J. Schoonjans K. Kerr T.A. Auwerx J. Mangelsdorf D.J. Mol. Cell. 2000; 6: 507-515Abstract Full Text Full Text PDF PubMed Scopus (1208) Google Scholar, 17Goodwin B. Jones S.A. Price R.R. Watson M.A. McKee D.D. Moore L.B. Galardi C. Wilson J.G. Lewis M.C. Roth M.E. Maloney P.R. Willson T.M. Kliewer S.A. Mol Cell. 2000; 6: 517-526Abstract Full Text Full Text PDF PubMed Scopus (1471) Google Scholar). It is well established that the FXR/SHP pathway plays an important role in maintaining bile acid and cholesterol levels by inhibiting the transcription of cholesterol cytochrome P450 7A1 hydroxylase, a key enzyme in hepatic bile acid biosynthesis (16Lu T.T. Makishima M. Repa J.J. Schoonjans K. Kerr T.A. Auwerx J. Mangelsdorf D.J. Mol. Cell. 2000; 6: 507-515Abstract Full Text Full Text PDF PubMed Scopus (1208) Google Scholar, 17Goodwin B. Jones S.A. Price R.R. Watson M.A. McKee D.D. Moore L.B. Galardi C. Wilson J.G. Lewis M.C. Roth M.E. Maloney P.R. Willson T.M. Kliewer S.A. Mol Cell. 2000; 6: 517-526Abstract Full Text Full Text PDF PubMed Scopus (1471) Google Scholar), and has been also shown to regulate fatty acid metabolism (18Watanabe M. Houten S.M. Wang L. Moschetta A. Mangelsdorf D.J. Heyman R.A. Moore D.D. Auwerx J. J. Clin. Invest. 2004; 113: 1408-1418Crossref PubMed Scopus (939) Google Scholar). Interestingly, FXR activation by the synthetic agonist, GW4064, or hepatic overexpression of constitutively active FXR using adenoviral delivery significantly improved hyperglycemia and hyperlipidemia in diabetic obese db/db mice (11Zhang Y. Lee F.Y. Barrera G. Lee H. Vales C. Gonzalez F.J. Willson T.M. Edwards P.A. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 1006-1011Crossref PubMed Scopus (696) Google Scholar). Although both SIRT1 and FXR are critical for hepatic metabolism and activation of both proteins improves metabolic outcomes (7Lagouge M. Argmann C. Gerhart-Hines Z. Meziane H. Lerin C. Daussin F. Messadeq N. Milne J. Lambert P. Elliott P. Geny B. Laakso M. Puigserver P. Auwerx J. Cell. 2006; 127: 1109-1122Abstract Full Text Full Text PDF PubMed Scopus (3267) Google Scholar, 8Baur J.A. Pearson K.J. Price N.L. Jamieson H.A. Lerin C. Kalra A. Prabhu V.V. Allard J.S. Lopez-Lluch G. Lewis K. Pistell P.J. Poosala S. Becker K.G. Boss O. Gwinn D. Wang M. Ramaswamy S. Fishbein K.W. Spencer R.G. Lakatta E.G. Le Couteur D. Shaw R.J. Navas P. Puigserver P. Ingram D.K. de Cabo R. Sinclair D.A. Nature. 2006; 444: 337-342Crossref PubMed Scopus (3619) Google Scholar, 11Zhang Y. Lee F.Y. Barrera G. Lee H. Vales C. Gonzalez F.J. Willson T.M. Edwards P.A. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 1006-1011Crossref PubMed Scopus (696) Google Scholar), it remains largely unknown whether the expression and activity of these two proteins are coordinately regulated.MicroRNAs (miRs) are recently discovered small (21–23-nucleotide) noncoding RNAs that inhibit translation and/or destabilize target mRNAs by binding to their 3′-untranslated regions (3′-UTRs) with partial base pairing (19Hobert O. Science. 2008; 319: 1785-1786Crossref PubMed Scopus (706) Google Scholar). MiRs play important roles in cellular metabolism under normal and metabolic stress conditions (20Esau C. Davis S. Murray S.F. Yu X.X. Pandey S.K. Pear M. Watts L. Booten S.L. Graham M. McKay R. Subramaniam A. Propp S. Lollo B.A. Freier S. Bennett C.F. Bhanot S. Monia B.P. Cell Metab. 2006; 3: 87-98Abstract Full Text Full Text PDF PubMed Scopus (1737) Google Scholar, 21van Rooij E. Sutherland L.B. Qi X. Richardson J.A. Hill J. Olson E.N. Science. 2007; 316: 575-579Crossref PubMed Scopus (1370) Google Scholar), and aberrant expression of miRs has been observed in human diseases, such as cancer and metabolic disorders (20Esau C. Davis S. Murray S.F. Yu X.X. Pandey S.K. Pear M. Watts L. Booten S.L. Graham M. McKay R. Subramaniam A. Propp S. Lollo B.A. Freier S. Bennett C.F. Bhanot S. Monia B.P. Cell Metab. 2006; 3: 87-98Abstract Full Text Full Text PDF PubMed Scopus (1737) Google Scholar, 21van Rooij E. Sutherland L.B. Qi X. Richardson J.A. Hill J. Olson E.N. Science. 2007; 316: 575-579Crossref PubMed Scopus (1370) Google Scholar, 22Yamakuchi M. Ferlito M. Lowenstein C.J. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 13421-13426Crossref PubMed Scopus (1096) Google Scholar, 23Chang T.C. Wentzel E.A. Kent O.A. Ramachandran K. Mullendore M. Lee K.H. Feldmann G. Yamakuchi M. Ferlito M. Lowenstein C.J. Arking D.E. Beer M.A. Maitra A. Mendell J.T. Mol. Cell. 2007; 26: 745-752Abstract Full Text Full Text PDF PubMed Scopus (1696) Google Scholar). Here, we show that the FXR/SHP regulatory pathway inhibits expression of miR-34a, which results in a positive regulation of hepatic SIRT1 levels under physiological conditions. We further show this regulatory network is altered in diet-induced obese mice, resulting in elevated miR-34a levels and subsequently reduced SIRT1 levels in the liver.DISCUSSIONDespite recent advances in understanding the biological functions of SIRT1, the molecular basis by which SIRT1 levels are regulated under normal conditions and why they are substantially reduced in metabolic disease states remains unclear. Our studies, at least in part, provide an explanation by showing that the FXR/SHP pathway plays a role in controlling hepatic SIRT1 levels via miR-34a inhibition and that elevated miR-34a levels in obese mice contribute to decreased SIRT1 protein levels.As summarized in Fig. 5E, in normal mice, hepatic miR-34a levels are regulated via a cascade pathway involving the nuclear bile acid receptor FXR and an orphan nuclear receptor and transcription corepressor SHP. Activation of FXR signaling inhibits the expression of hepatic miR-34a gene through the induction of SHP. SHP suppresses transcription of the miR-34a gene by inhibiting the promoter occupancy of p53, the key activator of the miR-34a gene. In contrast, in diet-induced obese mice, the FXR/SHP pathway is deregulated so that miR-34a levels are highly elevated, which contributes to reduced SIRT1 protein levels. Remarkably, activation of FXR in these obese mice by daily treatment with GW4064 for 5 days restores SIRT1 levels and decreases miR-34a levels. Edwards and colleagues (11Zhang Y. Lee F.Y. Barrera G. Lee H. Vales C. Gonzalez F.J. Willson T.M. Edwards P.A. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 1006-1011Crossref PubMed Scopus (696) Google Scholar) demonstrated previously that daily treatment of diabetic obese db/db mice with GW4064 for 5 days improved metabolic profiles by decreasing serum glucose and lipid levels. Therefore, our findings, together with these previous studies, indicate an intriguing link among FXR activation, decreased miR-34a levels, increased hepatic SIRT1 levels, and beneficial metabolic outcomes.The present studies demonstrate that FXR positively regulates hepatic SIRT1 levels through miR-34a inhibition. Interestingly, SIRT1 may positively regulate hepatic FXR as well. PGC-1α was shown to enhance FXR activity in the regulation of triglyceride metabolism during fasting by increasing expression of the FXR gene and also by coactivating FXR transactivation (33Zhang Y. Castellani L.W. Sinal C.J. Gonzalez F.J. Edwards P.A. Genes Dev. 2004; 18: 157-169Crossref PubMed Scopus (291) Google Scholar). Because SIRT1 deacetylates and increases PGC-1α activity (1Rodgers J.T. Lerin C. Haas W. Gygi S.P. Spiegelman B.M. Puigserver P. Nature. 2005; 434: 113-118Crossref PubMed Scopus (2524) Google Scholar, 6Rodgers J.T. Lerin C. Gerhart-Hines Z. Puigserver P. FEBS Lett. 2008; 582: 46-53Crossref PubMed Scopus (490) Google Scholar), SIRT1 should increase FXR activity via modulation of PGC-1α activity. Further, we recently reported that SIRT1 increases FXR transactivation ability by dynamic deacetylation of FXR (28Kemper J.K. Xiao Z. Ponugoti B. Miao J. Fang S. Kanamaluru D. Tsang S. Wu S.Y. Chiang C.M. Veenstra T.D. Cell Metab. 2009; 10: 392-404Abstract Full Text Full Text PDF PubMed Scopus (253) Google Scholar). FXR acetylation inhibits its transactivation potential by inhibiting interaction of FXR with RXR and subsequently DNA binding (28Kemper J.K. Xiao Z. Ponugoti B. Miao J. Fang S. Kanamaluru D. Tsang S. Wu S.Y. Chiang C.M. Veenstra T.D. Cell Metab. 2009; 10: 392-404Abstract Full Text Full Text PDF PubMed Scopus (253) Google Scholar). Although FXR acetylation is dynamically modulated by p300 and SIRT1, FXR acetylation levels are highly elevated in ob/ob mice and diet-induced obese mice (28Kemper J.K. Xiao Z. Ponugoti B. Miao J. Fang S. Kanamaluru D. Tsang S. Wu S.Y. Chiang C.M. Veenstra T.D. Cell Metab. 2009; 10: 392-404Abstract Full Text Full Text PDF PubMed Scopus (253) Google Scholar). These previous studies, along with current findings, suggest that an intriguing positive regulatory loop between FXR and SIRT1 is operating in hepatocytes in normal conditions. In obese mice, however, the FXR/SHP signaling may be deregulated because of highly elevated FXR acetylation levels, which results in elevated miR-34a levels.In accordance with important roles of FXR in regulating miR-34a and SIRT1 protein levels, miR-34 levels were elevated, and SIRT1 protein levels are substantially decreased in FXR-null mice. However, it is unclear and counterintuitive why activation of the nuclear bile acid receptor FXR, which would presumably occur during the fed state due to high levels of circulating bile acids, positively regulates SIRT1, which mediates hepatic fasting responses. In part, this probably results from our lack of complete understanding of the complex interplay of regulatory pathways in hepatic metabolism, but it may also reflect an adaptive process related to the continuous cycles of feeding and fasting. Staels and his colleagues (34Duran-Sandoval D. Cariou B. Percevault F. Hennuyer N. Grefhorst A. van Dijk T.H. Gonzalez F.J. Fruchart J.C. Kuipers F. Staels B. J. Biol. Chem. 2005; 280: 29971-29979Abstract Full Text Full Text PDF PubMed Scopus (175) Google Scholar, 35Cariou B. van Harmelen K. Duran-Sandoval D. van Dijk T. Grefhorst A. Bouchaert E. Fruchart J.C. Gonzalez F.J. Kuipers F. Staels B. FEBS Lett. 2005; 579: 4076-4080Crossref PubMed Scopus (73) Google Scholar) demonstrated that FXR plays an important role in adaptive responses during the transition from feeding to fasting and fasting-associated responses were markedly blunted in FXR-null mice. In line with these results, Auwerx and his colleagues (10Coste A. Louet J.F. Lagouge M. Lerin C. Antal M.C. Meziane H. Schoonjans K. Puigserver P. O'Malley B.W. Auwerx J. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 17187-17192Crossref PubMed Scopus (153) Google Scholar) demonstrated that SIRT1 levels are dynamically regulated under fasting and feeding in normal mice. SIRT1 levels were modestly increased upon short term fasting (6 h), but prominent expression was still observed in the fed state in normal mice (10Coste A. Louet J.F. Lagouge M. Lerin C. Antal M.C. Meziane H. Schoonjans K. Puigserver P. O'Malley B.W. Auwerx J. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 17187-17192Crossref PubMed Scopus (153) Google Scholar). We, therefore, envision that under normal conditions, FXR dynamically regulates metabolic pathways in response to fasting and feeding cycles, and activated FXR signaling during feeding would contribute to maintenance of basal levels of hepatic SIRT1 via miR-34a inhibition, which would allow for an efficient transition to the next fasting cycle. In contrast, this regulatory network is altered in metabolic disease states, resulting in constitutively elevated miR-34a levels and subsequently reduced SIRT1 levels in the liver.Recent studies demonstrate that SIRT1 deacetylates and inhibits p53 activity, which results in decreased expression of miR-34a (3Luo J. Nikolaev A.Y. Imai S. Chen D. Su F. Shiloh A. Guarente L. Gu W. Cell. 2001; 107: 137-148Abstract Full Text Full Text PDF PubMed Scopus (1873) Google Scholar, 22Yamakuchi M. Ferlito M. Lowenstein C.J. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 13421-13426Crossref PubMed Scopus (1096) Google Scholar, 36Yamakuchi M. Lowenstein C.J. Cell Cycle. 2009; 8: 712-715Crossref PubMed Scopus (375) Google Scholar, 37He L. He X. Lim L.P. de Stanchina E. Xuan Z. Liang Y. Xue W. Zender L. Magnus J. Ridzon D. Jackson A.L. Linsley P.S. Chen C. Lowe S.W. Cleary M.A. Hannon G.J. Nature. 2007; 447: 1130-1134Crossref PubMed Scopus (2282) Google Scholar). Consistent with this feedback regulatory loop, we also observed that overexpression of SIRT1 in liver of diet-induced obese mice using tail vein injection of Ad-FLAG-SIRT1 substantially decreased hepatic miR-34a levels (supplemental Fig. S12). Furthermore, daily treatment for 1 week with resveratrol, which activates SIRT1, also decreased miR-34a levels in obese mice (supplemental Fig. S12). Resveratrol indirectly activates SIRT1 by AMP-activated protein kinase activation (38Hou X. Xu S. Maitland-Toolan K.A. Sato K. Jiang B. Ido Y. Lan F. Walsh K. Wierzbicki M. Verbeuren T.J. Cohen R.A. Zang M. J. Biol. Chem. 2008; 283: 20015-20026Abstract Full Text Full Text PDF PubMed Scopus (644) Google Scholar, 39Cantó C. Gerhart-Hines Z. Feige J.N. Lagouge M. Noriega L. Milne J.C. Elliott P.J. Puigserver P. Auwerx J. Nature. 2009; 458: 1056-1060Crossref PubMed Scopus (2266) Google Scholar), so the possibility that resveratrol is acting in a SIRT1-independent manner cannot be ruled out. However, the SIRT1 expression studies, combined with the resveratrol results, further support the existence of the regulatory loop between miR-34a and SIRT1 in hepatocytes in which SIRT1 inhibits expression of its own inhibitor, miR-34a, thereby further enhancing SIRT1 expression.MiRs are emerging as important cellular regulators critically involved in diverse biological pathways, including metabolic regulation, cell proliferation, and apoptosis (19Hobert O. Science. 2008; 319: 1785-1786Crossref PubMed Scopus (706) Google Scholar, 37He L. He X. Lim L.P. de Stanchina E. Xuan Z. Liang Y. Xue W. Zender L. Magnus J. Ridzon D. Jackson A.L. Linsley P.S. Chen C. Lowe S.W. Cleary M.A. Hannon G.J. Nature. 2007; 447: 1130-1134Crossref PubMed Scopus (2282) Google Scholar). Approximately 30% of all human genes are thought to be regulated by miRs, and elevated levels of miRs have been detected in diverse pathophysiological conditions (20Esau C. Davis S. Murray S.F. Yu X.X. Pandey S.K. Pear M. Watts L. Booten S.L. Graham M. McKay R. Subramaniam A. Propp S. Lollo B.A. Freier S. Bennett C.F. Bhanot S. Monia B.P. Cell Metab. 2006; 3: 87-98Abstract Full Text Full Text PDF PubMed Scopus (1737) Google Scholar, 21van Rooij E. Sutherland L.B. Qi X. Richardson J.A. Hill J. Olson E.N. Science. 2007; 316: 575-579Crossref PubMed Scopus (1370) Google Scholar). Recent in vivo studies demonstrated that antisense miRs may have therapeutic value by down-regulating miRs in disease conditions (20Esau C. Davis S. Murray S.F. Yu X.X. Pandey S.K. Pear M. Watts L. Booten S.L. Graham M. McKay R. Subramaniam A. Propp S. Lollo B.A. Freier S. Bennett C.F. Bhanot S. Monia B.P. Cell Metab. 2006; 3: 87-98Abstract Full Text Full Text PDF PubMed Scopus (1737) Google Scholar, 40Krützfeldt J. Kuwajima S. Braich R. Rajeev K.G. Pena J. Tuschl T. Manoharan M. Stoffel M. Nucleic Acids Res. 2007; 35: 2885-2892Crossref PubMed Scopus (383) Google Scholar). It will be important to see whether down-regulation of elevated miR-34a in obese mouse liver using anti-miR-34a approaches would increase hepatic SIRT1 levels and improve metabolic outcomes in these mice. Modulation of SIRT1 levels by manipulation of the FXR-miR-34a-SIRT1 pathway, therefore, may provide a novel therapeutic target for treating aging-related diseases, such as metabolic disorders and cancer, in which SIRT1 plays an important role. IntroductionThe NAD+-dependent Sirtuin 1 (SIRT1) 3The abbreviations used are: SIRT1Sirtuin 1PGC-1αperoxisome proliferator-activated receptor γ coactivator αFXRfarnesoid X receptorSHPsmall heterodimer partnermiRmicroRNA3′-UTR3′-untranslated regionHNF-4hepatic nuclear factor 4qRT-PCRreverse transcription-quantitative PCRAdadenovirusChIPchromatin immunoprecipitationGSTglutathione S-transferaseCoIPcoimmunoprecipitationsiRNAsmall interfering RNAlucluciferaseWDwestern style diet. deacetylase plays a critical role in cellular metabolism, the stress response, and possibly aging, by modulating the activity of its target proteins via protein deacetylation (1Rodgers J.T. Lerin C. Haas W. Gygi S.P. Spiegelman B.M. Puigserver P. Nature. 2005; 434: 113-118Crossref PubMed Scopus (2524) Google Scholar, 2Motta M.C. Divecha N. Lemieux M. Kamel C. Chen D. Gu W. Bultsma Y. McBurney M. Guarente L. Cell. 2004; 116: 551-563Abstract Full Text Full Text PDF PubMed Scopus (1184) Google Scholar, 3Luo J. Nikolaev A.Y. Imai S. Chen D. Su F. Shiloh A. Guarente L. Gu W. Cell. 2001; 107: 137-148Abstract Full Text Full Text PDF PubMed Scopus (1873) Google Scholar, 4Guarente L. Cold Spring Harb. Symp. Quant. Biol. 2007; 72: 483-488Crossref PubMed Scopus (285) Google Scholar). Recent studies demonstrate that SIRT1 plays an important role in maintaining metabolic homeostasis in response to hormonal and nutritional fluctuations by modulating the activity of PGC-1α, a master metabolic regulator (5Rodgers J.T. Puigserver P. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 12861-12866Crossref PubMed Scopus (444) Google Scholar, 6Rodgers J.T. Lerin C. Gerhart-Hines Z. Puigserver P. FEBS Lett. 2008; 582: 46-53Crossref PubMed Scopus (490) Google Scholar). During nutritional deprivation, SIRT1 promotes fat mobilization and suppresses adipogenesis and regulates hepatic glucose and lipid metabolism by activating key metabolic regulators, including PGC-1α (5Rodgers J.T. Puigserver P. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 12861-12866Crossref PubMed Scopus (444) Google Scholar, 6Rodgers J.T. Lerin C. Gerhart-Hines Z. Puigserver P. FEBS Lett. 2008; 582: 46-53Crossref PubMed Scopus (490) Google Scholar). Activation of SIRT1 by natural or synthetic SIRT1 activators reduced acetylation levels of PGC-1α and protected against diet-induced obesity and insulin resistance by promoting mitochondrial function (7Lagouge M. Argmann C. Gerhart-Hines Z. Meziane H. Lerin C. Daussin F. Messadeq N. Milne J. Lambert P. Elliott P. Geny B. Laakso M. Puigserver P. Auwerx J. Cell. 2006; 127: 1109-1122Abstract Full Text Full Text PDF PubMed Scopus (3267) Google Scholar, 8Baur J.A. Pearson K.J. Price N.L. Jamieson H.A. Lerin C. Kalra A. Prabhu V.V. Allard J.S. Lopez-Lluch G. Lewis K. Pistell P.J. Poosala S. Becker K.G. Boss O. Gwinn D. Wang M. Ramaswamy S. Fishbein K.W. Spencer R.G. Lakatta E.G. Le Couteur D. Shaw R.J. Navas P. Puigserver P. Ingram D.K. de Cabo R. Sinclair D.A. Nature. 2006; 444: 337-342Crossref PubMed Scopus (3619) Google Scholar, 9Feige J.N. Lagouge M. Canto C. Strehle A. Houten S.M. Milne J.C. Lambert P.D. Mataki C. Elliott P.J. Auwerx J. Cell Metab. 2008; 8: 347-358Abstract Full Text Full Text PDF PubMed Scopus (608) Google Scholar). SIRT1 levels are dynamically regulated in response to fasting and feeding under physiological conditions but markedly reduced in diet-induced obese mice (10Coste A. Louet J.F. Lagouge M. Lerin C. Antal M.C. Meziane H. Schoonjans K. Puigserver P. O'Malley B.W. Auwerx J. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 17187-17192Crossref PubMed Scopus (153) Google Scholar). However, the molecular basis by which SIRT1 levels are regulated under normal conditions and why they are substantially reduced in metabolic disease states remains largely unknown.The nuclear receptor, farnesoid X receptor (FXR), is the primary biosensor for endogenous bile acids and regulates expression of numerous genes involved in lipid and glucose metabolism (11Zhang Y. Lee F.Y. Barrera G. Lee H. Vales C. Gonzalez F.J. Willson T.M. Edwards P.A. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 1006-1011Crossref PubMed Scopus (696) Google Scholar, 12Sinal C.J. Tohkin M. Miyata M. Ward J.M. Lambert G. Gonzalez F.J. Cell. 2000; 102: 731-744Abstract Full Text Full Text PDF PubMed Scopus (1378) Google Scholar, 13Lee F.Y. Lee H. Hubbert M.L. Edwards P.A. Zhang Y. Trends Biochem. Sci. 2006; 31: 572-580Abstract Full Text Full Text PDF PubMed Scopus (274) Google Scholar, 14Fiorucci S. Rizzo G. Donini A. Distrutti E. Santucci L. Trends Mol. Med. 2007; 13: 298-309Abstract Full Text Full Text PDF PubMed Scopus (175) Google Scholar, 15Cariou B. Staels B. Trends Pharmacol. Sci. 2007; 28: 236-243Abstract Full Text Full Text PDF PubMed Scopus (118) Google Scholar). FXR indirectly inhibits its metabolic target genes by inducing the expression of small heterodimer partner (SHP), an orphan nuclear receptor and transcriptional corepressor (16Lu T.T. Makishima M. Repa J.J. Schoonjans K. Kerr T.A. Auwerx J. Mangelsdorf D.J. Mol. Cell. 2000; 6: 507-515Abstract Full Text Full Text PDF PubMed Scopus (1208) Google Scholar, 17Goodwin B. Jones S.A. Price R.R. Watson M.A. McKee D.D. Moore L.B. Galardi C. Wilson J.G. Lewis M.C. Roth M.E. Maloney P.R. Willson T.M. Kliewer S.A. Mol Cell. 2000; 6: 517-526Abstract Full Text Full Text PDF PubMed Scopus (1471) Google Scholar). It is well established that the FXR/SHP pathway plays an important role in maintaining bile acid and cholesterol levels by inhibiting the transcription of cholesterol cytochrome P450 7A1 hydroxylase, a key enzyme in hepatic bile acid biosynthesis (16Lu T.T. Makishima M. Repa J.J. Schoonjans K. Kerr T.A. Auwerx J. Mangelsdorf D.J. Mol. Cell. 2000; 6: 507-515Abstract Full Text Full Text PDF PubMed Scopus (1208) Google Scholar, 17Goodwin B. Jones S.A. Price R.R. Watson M.A. McKee D.D. Moore L.B. Galardi C. Wilson J.G. Lewis M.C. Roth M.E. Maloney P.R. Willson T.M. Kliewer S.A. Mol Cell. 2000; 6: 517-526Abstract Full Text Full Text PDF PubMed Scopus (1471) Google Scholar), and has been also shown to regulate fatty acid metabolism (18Watanabe M. Houten S.M. Wang L. Moschetta A. Mangelsdorf D.J. Heyman R.A. Moore D.D. Auwerx J. J. Clin. Invest. 2004; 113: 1408-1418Crossref PubMed Scopus (939) Google Scholar). Interestingly, FXR activation by the synthetic agonist, GW4064, or hepatic overexpression of constitutively active FXR using adenoviral delivery significantly improved hyperglycemia and hyperlipidemia in diabetic obese db/db mice (11Zhang Y. Lee F.Y. Barrera G. Lee H. Vales C. Gonzalez F.J. Willson T.M. Edwards P.A. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 1006-1011Crossref PubMed Scopus (696) Google Scholar). Although both SIRT1 and FXR are critical for hepatic metabolism and activation of both proteins improves metabolic outcomes (7Lagouge M. Argmann C. Gerhart-Hines Z. Meziane H. Lerin C. Daussin F. Messadeq N. Milne J. Lambert P. Elliott P. Geny B. Laakso M. Puigserver P. Auwerx J. Cell. 2006; 127: 1109-1122Abstract Full Text Full Text PDF PubMed Scopus (3267) Google Scholar, 8Baur J.A. Pearson K.J. Price N.L. Jamieson H.A. Lerin C. Kalra A. Prabhu V.V. Allard J.S. Lopez-Lluch G. Lewis K. Pistell P.J. Poosala S. Becker K.G. Boss O. Gwinn D. Wang M. Ramaswamy S. Fishbein K.W. Spencer R.G. Lakatta E.G. Le Couteur D. Shaw R.J. Navas P. Puigserver P. Ingram D.K. de Cabo R. Sinclair D.A. Nature. 2006; 444: 337-342Crossref PubMed Scopus (3619) Google Scholar, 11Zhang Y. Lee F.Y. Barrera G. Lee H. Vales C. Gonzalez F.J. Willson T.M. Edwards P.A. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 1006-1011Crossref PubMed Scopus (696) Google Scholar), it remains largely unknown whether the expression and activity of these two proteins are coordinately regulated.MicroRNAs (miRs) are recently discovered small (21–23-nucleotide) noncoding RNAs that inhibit translation and/or destabilize target mRNAs by binding to their 3′-untranslated regions (3′-UTRs) with partial base pairing (19Hobert O. Science. 2008; 319: 1785-1786Crossref PubMed Scopus (706) Google Scholar). MiRs play important roles in cellular metabolism under normal and metabolic stress conditions (20Esau C. Davis S. Murray S.F. Yu X.X. Pandey S.K. Pear M. Watts L. Booten S.L. Graham M. McKay R. Subramaniam A. Propp S. Lollo B.A. Freier S. Bennett C.F. Bhanot S. Monia B.P. Cell Metab. 2006; 3: 87-98Abstract Full Text Full Text PDF PubMed Scopus (1737) Google Scholar, 21van Rooij E. Sutherland L.B. Qi X. Richardson J.A. Hill J. Olson E.N. Science. 2007; 316: 575-579Crossref PubMed Scopus (1370) Google Scholar), and aberrant expression of miRs has been observed in human diseases, such as cancer and metabolic disorders (20Esau C. Davis S. Murray S.F. Yu X.X. Pandey S.K. Pear M. Watts L. Booten S.L. Graham M. McKay R. Subramaniam A. Propp S. Lollo B.A. Freier S. Bennett C.F. Bhanot S. Monia B.P. Cell Metab. 2006; 3: 87-98Abstract Full Text Full Text PDF PubMed Scopus (1737) Google Scholar, 21van Rooij E. Sutherland L.B. Qi X. Richardson J.A. Hill J. Olson E.N. Science. 2007; 316: 575-579Crossref PubMed Scopus (1370) Google Scholar, 22Yamakuchi M. Ferlito M. Lowenstein C.J. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 13421-13426Crossref PubMed Scopus (1096) Google Scholar, 23Chang T.C. Wentzel E.A. Kent O.A. Ramachandran K. Mullendore M. Lee K.H. Feldmann G. Yamakuchi M. Ferlito M. Lowenstein C.J. Arking D.E. Beer M.A. Maitra A. Mendell J.T. Mol. Cell. 2007; 26: 745-752Abstract Full Text Full Text PDF PubMed Scopus (1696) Google Scholar). Here, we show that the FXR/SHP regulatory pathway inhibits expression of miR-34a, which results in a positive regulation of hepatic SIRT1 levels under physiological conditions. We further show this regulatory network is altered in diet-induced obese mice, resulting in elevated miR-34a levels and subsequently reduced SIRT1 levels in the liver.