MT
Mark Turmaine
Author with expertise in Roles of Neurotrophins in Nervous System Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
4,887
h-index:
42
/
i10-index:
81
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington's disease

Mark Turmaine et al.Jun 27, 2000
Huntington's disease (HD) is a fatal inherited neurodegenerative disorder characterized by personality changes, motor impairment, and subcortical dementia. HD is one of a number of diseases caused by expression of an expanded polyglutamine repeat. We have developed several lines of mice that are transgenic for exon 1 of the HD gene containing an expanded CAG sequence. These mice exhibit a defined neurological phenotype along with neuronal changes that are pathognomonic for the disease. We have previously observed the appearance of neuronal intranuclear inclusions, but did not find evidence for neurodegeneration. In this study, we report that all lines of these mice develop a late onset neurodegeneration within the anterior cingulate cortex, dorsal striatum, and of the Purkinje neurons of the cerebellum. Dying neurons characteristically exhibit neuronal intranuclear inclusions, condensation of both the cytoplasm and nucleus, and ruffling of the plasma membrane while maintaining ultrastructural preservation of cellular organelles. These cells do not develop blebbing of the nucleus or cytoplasm, apoptotic bodies, or fragmentation of DNA. Neuronal death occurs over a period of weeks not hours. We also find degenerating cells of similar appearance within these same regions in brains of patients who had died with HD. We therefore suggest that the mechanism of neuronal cell death in both HD and a transgenic mouse model of HD is neither by apoptosis nor by necrosis.
0
Citation427
0
Save
0

Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity

Ashwin Woodhoo et al.Jun 14, 2009
Although the role of Notch signaling in CNS glial development is well established, its participation in peripheral glial development is still unclear. This paper shows that Notch signaling regulates the differentiation of Schwann cell precursors and the proliferation of Schwann cells, and acts as a break on myelination of peripheral nerves. Notch signaling is central to vertebrate development, and analysis of Notch has provided important insights into pathogenetic mechanisms in the CNS and many other tissues. However, surprisingly little is known about the role of Notch in the development and pathology of Schwann cells and peripheral nerves. Using transgenic mice and cell cultures, we found that Notch has complex and extensive regulatory functions in Schwann cells. Notch promoted the generation of Schwann cells from Schwann cell precursors and regulated the size of the Schwann cell pool by controlling proliferation. Notch inhibited myelination, establishing that myelination is subject to negative transcriptional regulation that opposes forward drives such as Krox20. Notably, in the adult, Notch dysregulation resulted in demyelination; this finding identifies a signaling pathway that induces myelin breakdown in vivo. These findings are relevant for understanding the molecular mechanisms that control Schwann cell plasticity and underlie nerve pathology, including demyelinating neuropathies and tumorigenesis.
0
Citation303
0
Save
0

Patient-specific Alzheimer-like pathology in trisomy 21 cerebral organoids reveals BACE2 as a gene-dose-sensitive AD-suppressor in human brain

Ivan Alić et al.Jan 31, 2020
A population of >6 million people worldwide at high risk of Alzheimer's disease (AD) are those with Down Syndrome (DS, caused by trisomy 21 (T21)), 70% of whom develop dementia during lifetime, caused by an extra copy of β-amyloid-(Aβ)-precursor-protein gene. We report AD-like pathology in cerebral organoids grown in vitro from non-invasively sampled strands of hair from 71% of DS donors. The pathology consisted of extracellular diffuse and fibrillar Aβ deposits, hyperphosphorylated/pathologically conformed Tau, and premature neuronal loss. Presence/absence of AD-like pathology was donor-specific (reproducible between individual organoids/iPSC lines/experiments). Pathology could be triggered in pathology-negative T21 organoids by CRISPR/Cas9-mediated elimination of the third copy of chromosome-21-gene BACE2, but prevented by combined chemical β and γ-secretase inhibition. We found that T21-organoids secrete increased proportions of Aβ-preventing (Aβ1-19) and Aβ degradation products (Aβ1-20 and Aβ1-34). We show these profiles mirror in cerebrospinal fluid of people with DS. We demonstrate that this protective mechanism is mediated by BACE2-trisomy and cross-inhibited by clinically trialled BACE1-inhibitors. Combined, our data prove the physiological role of BACE2 as a dose-sensitive AD-suppressor gene, potentially explaining the dementia delay in ~30% of people with DS. We also show that DS cerebral organoids could be explored as pre-morbid AD-risk population detector and a system for hypothesis-free drug screens as well as identification of natural suppressor genes for neurodegenerative diseases.
15

SARM1 detection in oligodendrocytes but not Schwann cells thoughsarm1/Sarm1deletion does not perturb CNS nor PNS myelination in zebrafish and mice

Shaline Fazal et al.Dec 9, 2022
Abstract SARM1 is a central regulator of programmed axon death and is required to initiate axon self-destruction after traumatic and toxic insults to the nervous system. Abnormal activation of this axon degeneration pathway is increasingly recognized as a contributor to human neurological disease and SARM1 knockdown or inhibition has become an attractive therapeutic strategy to preserve axon loss in a variety of disorders of the peripheral and central nervous system. Despite this, it remains unknown whether Sarm1 /SARM1 is present in myelinating glia and whether it plays a role in myelination in the PNS or CNS. It is important to answer these questions to understand whether future therapies inhibiting SARM1 function may have unintended deleterious impacts on myelination. Here we show that Sarm1 mRNA is present in oligodendrocytes in zebrafish but only detectable at low levels in Schwann cells in both zebrafish and mice. We find SARM1 protein is readily detectable in murine oligodendrocytes in vitro and in vivo and activation of endogenous SARM1 in oligodendrocytes induces cell death. In contrast, SARM1 protein is not detectable in Schwann cells and satellite glia in the adult murine nervous system. Cultured Schwann cells contain negligible functional SARM1 and are insensitive to specific SARM1 activators. Using zebrafish and mouse Sarm1 mutants, we show that SARM1 is not required for initiation of myelination nor myelin sheath maintenance by oligodendrocytes and Schwann cells. Thus, strategies to inhibit SARM1 function in the nervous system to treat neurological disease are unlikely to perturb myelination in humans. Main Points SARM1 protein is detectable in oligodendrocytes but not in Schwann cells Oligodendrocytes but not Schwann cells die in response to endogenous SARM1 activation CNS nor PNS myelination, in zebrafish and mice, is hindered by loss of sarm1/Sarm1