GM
Giuseppe Mancia
Author with expertise in Management of Hypertension and Cardiovascular Risk Factors
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
66
(67% Open Access)
Cited by:
69,884
h-index:
149
/
i10-index:
952
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

2013 ESH/ESC Guidelines for the management of arterial hypertension

Giuseppe Mancia et al.Jun 18, 2013
Table of Contents Introduction Principles New aspects Epidemiological aspects Relationship of blood pressure to cardiovascular and renal damage Definition and classification of hypertension Prevalence of hypertension Hypertension and total cardiovascular risk Assessment of total cardiovascular risk Limitations Summary of recommendations on total cardiovascular risk assessment Diagnostic evaluation Bood pressure measurement Office or clinic blood pressure Out-of-office blood pressure White-coat (or isolated office) hypertension and masked (or isolated ambulatory) hypertension Clinical indications for out-of-office blood pressure Blood pressure during exercise and laboratory stress Central blood pressure Medical history Physical examination Summary of recommendations on blood pressure measurement, history, and physical examination Laboratory investigations Genetics Searching for asymptomatic organ damage Heart Blood vessels Kidney Fundoscopy Brain Clinical value and limitations Summary of recommendations on the search for asymptomatic organ damage, cardiovascular disease, and chronic kidney disease Searching for secondary forms of hypertension Treatment approach Evidence favouring therapeutic reduction of high blood pressure When to initiate antihypertensive drug treatment Recommendations of previous Guidelines Grade 2 and 3 hypertension and high-risk grade 1 hypertension Low-to-moderate risk, grade 1 hypertension Isolated systolic hypertension in youth Grade 1 hypertension in the elderly High normal blood pressure Summary of recommendations on initiation of antihypertensive drug treatment Blood pressure treatment targets Recommendations of previous Guidelines Low-to-moderate risk hypertensive patients Hypertension in the elderly High-risk patients The ‘lower the better’ vs. the J-shaped curve hypothesis Evidence on target blood pressure from organ damage studies Clinic vs. home and ambulatory blood pressure targets Summary of recommendations on blood pressure targets in hypertensive patients Treatment strategies Lifestyle changes Salt restriction Moderation of alcohol consumption Other dietary changes Weight reduction Regular physical exercise Smoking cessation Summary of recommendations on adoption of lifestyle changes Pharmacological therapy Choice of antihypertensive drugs Monotherapy and combination therapy Summary of recommendations on treatment strategies and choice of drugs Treatment strategies in special conditions White-coat hypertension Masked hypertension Summary of recommendations on treatment strategies in white-coat and masked hypertension Elderly Summary of recommendations on antihypertensive treatment strategies in the elderly Young adults Women Oral contraceptives Hormone replacement therapy Pregnancy Long-term cardiovascular consequences in gestational hypertension Summary of recommendations on treatment strategies in hypertensive women Diabetes mellitus Summary of recommendations on treatment strategies in patients with diabetes Metabolic syndrome Summary of recommendations on treatment strategies in hypertensive patients with metabolic syndrome Obstructive sleep apnoea Diabetic and non-diabetic nephropathy Summary of recommendations on therapeutic strategies in hypertensive patients with nephropathy Chronic kidney disease stage 5D Cerebrovascular disease Acute stroke Previous stroke or transient ischaemic attack Cognitive dysfunction and white matter lesions Summary of recommendations on therapeutic strategies in hypertensive patients with cerebrovascular disease Heart disease Coronary heart disease Heart failure Atrial fibrillation Left ventricular hypertrophy Summary of recommendations on therapeutic strategies in hypertensive patients with heart disease Atherosclerosis, arteriosclerosis, and peripheral artery disease Carotid atherosclerosis Increased arterial stiffness Peripheral artery disease Summary of recommendations on therapeutic strategies in hypertensive patients with atherosclerosis, arteriosclerosis, and peripheral artery disease Sexual dysfunction Resistant hypertension Carotid baroreceptor stimulation Renal denervation Other invasive approaches Follow-up in resistant hypertension Summary of recommendations on therapeutic strategies in patients with resistant hypertension Malignant hypertension Hypertensive emergencies and urgencies Perioperative management of hypertension Renovascular hypertension Primary aldosteronism Treatment of associated risk factors Lipid-lowering agents Antiplatelet therapy Treatment of hyperglycaemia Summary of recommendations on treatment of risk factors associated with hypertension Follow-up Follow-up of hypertensive patients Follow-up of subjects with high normal blood pressure and white-coat hypertension Elevated blood pressure at control visits Continued search for asymptomatic organ damage Can antihypertensive medications be reduced or stopped? Improvement of blood pressure control in hypertension Hypertension disease management Team approach in disease management Mode of care delivery The role of information and communication technologies 53 Gaps in evidence and need for future trials Appendix 1 Appendix 2 Acknowledgments References 1. INTRODUCTION 1.1 Principles The 2013 guidelines on hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC) follow the guidelines jointly issued by the two societies in 2003 and 2007 [1,2]. Publication of a new document 6 years after the previous one was felt to be timely because, over this period, important studies have been conducted and many new results have been published on both the diagnosis and treatment of individuals with an elevated blood pressure (BP), making refinements, modifications and expansion of the previous recommendations necessary. The 2013 ESH/ESC guidelines continue to adhere to some fundamental principles that inspired the 2003 and 2007 guidelines, namely (i) to base recommendations on properly conducted studies identified from an extensive review of the literature, (ii) to consider, as the highest priority, data from randomized, controlled trials (RCTs) and their meta-analyses, but not to disregard—particularly when dealing with diagnostic aspects—the results of observational and other studies of appropriate scientific calibre, and (iii) to grade the level of scientific evidence and the strength of recommendations on major diagnostic and treatment issues as in European guidelines on other diseases, according to ESC recommendations (Tables 1 and 2). While it was not done in the 2003 and 2007 guidelines, providing the recommendation class and the level of evidence is now regarded as important for providing interested readers with a standard approach, by which to compare the state of knowledge across different fields of medicine. It was also thought that this could more effectively alert physicians on recommendations that are based on the opinions of the experts rather than on evidence. This is not uncommon in medicine because, for a great part of daily medical practice, no good science is available and recommendations must therefore stem from common sense and personal clinical experience, both of which can be fallible. When appropriately recognized, this can avoid guidelines being perceived as prescriptive and favour the performance of studies where opinion prevails and evidence is lacking. A fourth principle, in line with its educational purpose, is to provide a large number of tables and a set of concise recommendations that could be easily and rapidly consulted by physicians in their routine practice.TABLE 1: Classes of recommendationsTABLE 2: Levels of EvidenceThe European members of the Task Force in charge of the 2013 guidelines on hypertension have been appointed by the ESH and ESC, based on their recognized expertise and absence of major conflicts of interest [their declaration of interest forms can be found on the ESC website (www.escardio.org/guidelines) and ESH website (www.eshonline.org)]. Each member was assigned a specific writing task, which was reviewed by three co-ordinators and then by two chairmen, one appointed by ESH and another by ESC. The text was finalized over approximately 18 months, during which the Task Force members met collectively several times and corresponded intensively with one another between meetings. Before publication, the document was also assessed twice by 42 European reviewers, half selected by ESH and half by ESC. It can thus be confidently stated that the recommendations issued by the 2013 ESH/ESC guidelines on hypertension largely reflect the state of the art on hypertension, as viewed by scientists and physicians in Europe. Expenses for meetings and the remaining work have been shared by ESH and ESC. 1.2 New aspects Because of new evidence on several diagnostic and therapeutic aspects of hypertension, the present guidelines differ in many respects from the previous ones [2]. Some of the most important differences are listed below: Epidemiological data on hypertension and BP control in Europe. Strengthening of the prognostic value of home blood pressure monitoring (HBPM) and of its role for diagnosis and management of hypertension, next to ambulatory blood pressure monitoring (ABPM). Update of the prognostic significance of night-time BP, white-coat hypertension and masked hypertension. Re-emphasis on integration of BP, cardiovascular (CV) risk factors, asymptomatic organ damage (OD) and clinical complications for total CV risk assessment. Update of the prognostic significance of asymptomatic OD, including heart, blood vessels, kidney, eye and brain. Reconsideration of the risk of overweight and target body mass index (BMI) in hypertension. Hypertension in young people. Initiation of antihypertensive treatment. More evidence-based criteria and no drug treatment of high normal BP. Target BP for treatment. More evidence-based criteria and unified target systolic blood pressure (SBP) (<140 mmHg) in both higher and lower CV risk patients. Liberal approach to initial monotherapy, without any all-ranking purpose. Revised schema for priorital two-drug combinations. New therapeutic algorithms for achieving target BP. Extended section on therapeutic strategies in special conditions. Revised recommendations on treatment of hypertension in the elderly. Drug treatment of octogenarians. Special attention to resistant hypertension and new treatment approaches. Increased attention to OD-guided therapy. New approaches to chronic management of hypertensive disease. 2. EPIDEMIOLOGICAL ASPECTS 2.1 Relationship of blood pressure to cardiovascular and renal damage The relationship between BP values and CV and renal morbid-and fatal events has been addressed in a large number of observational studies [3]. The results, reported in detail in the 2003 and 2007 ESH/ESC guidelines [1,2], can be summarized as follows: Office BP bears an independent continuous relationship with the incidence of several CV events [stroke, myocardial infarction, sudden death, heart failure and peripheral artery disease (PAD)] as well as of end-stage renal disease (ESRD) [3–5]. This is true at all ages and in all ethnic groups [6,7]. The relationship with BP extends from high BP levels to relatively low values of 110–115 mmHg for SBP and 70–75 mmHg for diastolic BP (DBP). SBP appears to be a better predictor of events than DBP after the age of 50 years [8,9], and in elderly individuals pulse pressure (the difference between SBP and DBP values) has been reported to have a possible additional prognostic role [10]. This is indicated also by the particularly high CV risk exhibited by patients with an elevated SBP and a normal or low DBP [isolated systolic hypertension (ISH)] [11]. A continuous relationship with events is also exhibited by out-of-office BP values, such as those obtained by ABPM and HBPM (see Section 3.1.2). The relationship between BP and CV morbidity and mortality is modified by the concomitance of other CV risk factors. Metabolic risk factors are more common when BP is high than when it is low [12,13]. 2.2 Definition and classification of hypertension The continuous relationship between BP and CV and renal events makes the distinction between normotension and hypertension difficult when based on cut-off BP values. This is even more so because, in the general population, SBP and DBP values have a unimodal distribution [14]. In practice, however, cut-off BP values are universally used, both to simplify the diagnostic approach and to facilitate the decision about treatment. The recommended classification is unchanged from the 2003 and 2007 ESH/ESC guidelines (Table 3). Hypertension is defined as values >140 mmHg SBP and/or >90 mmHg DBP, based on the evidence from RCTs that in patients with these BP values treatment-induced BP reductions are beneficial (see Sections 4.1 and 4.2). The same classification is used in young, middle-aged and elderly subjects, whereas different criteria, based on percentiles, are adopted in children and teenagers for whom data from interventional trials are not available. Details on BP classification in boys and girls according to their age and height can be found in the ESH's report on the diagnosis, evaluation and treatment of high BP in children and adolescents [15].TABLE 3: Definitions and classification of office blood pressure levels (mmHg)a2.3 Prevalence of hypertension Limited comparable data are available on the prevalence of hypertension and the temporal trends of BP values in different European countries [16]. Overall the prevalence of hypertension appears to be around 30–45% of the general population, with a steep increase with ageing. There also appear to be noticeable differences in the average BP levels across countries, with no systematic trends towards BP changes in the past decade [17–37]. Owing to the difficulty of obtaining comparable results among countries and overtime, the use of a surrogate of hypertension status has been suggested [38]. Stroke mortality is a good candidate, because hypertension is by far the most important cause of this event. A close relationship between prevalence of hypertension and mortality for stroke has been reported [39]. The incidence and trends of stroke mortality in Europe have been analysed by use of World Health Organization (WHO) statistics. Western European countries exhibit a downward trend, in contrast to eastern European countries, which show a clear-cut increase in death rates from stroke [40]. 2.4 Hypertension and total cardiovascular risk For a long time, hypertension guidelines focused on BP values as the only- or main variables determining the need for—and the type of—treatment. In 1994, the ESC, ESH and European Atherosclerosis Society (EAS) developed joint recommendations on prevention of coronary heart disease (CHD) in clinical practice [41], and emphasized that prevention of CHD should be related to quantification of total (or global) CV risk. This approach is now generally accepted and had already been integrated into the 2003 and 2007 ESH/ESC guidelines for the management of arterial hypertension [1,2]. The concept is based on the fact that only a small fraction of the hypertensive population has an elevation of BP alone, with the majority exhibiting additional CV risk factors. Furthermore, when concomitantly present, BP and other CV risk factors may potentiate each other, leading to a total CV risk that is greater than the sum of its individual components. Finally, in high-risk individuals, antihypertensive treatment strategies (initiation and intensity of treatment, use of drug combinations, etc.: see Sections 4,5,6 and 7), as well as other treatments, may be different from those to be implemented in lower-risk individuals. There is evidence that, in high-risk individuals, BP control is more difficult and more frequently requires the combination of antihypertensive drugs with other therapies, such as aggressive lipid-lowering treatments. The therapeutic approach should consider total CV risk in addition to BP levels in order to maximize cost-effectiveness of the management of hypertension. 2.4.1 Assessment of total cardiovascular risk Estimation of total CV risk is easy in particular subgroups of patients, such as those with antecedents of established cardiovascular disease (CVD), diabetes, CHD or with severely elevated single risk factors. In all of these conditions, the total CV risk is high or very high, calling for intensive CV risk-reducing measures. However, a large number of patients with hypertension do not belong to any of the above categories and the identification of those at low, moderate, high or very high risk requires the use of models to estimate total CV risk, so as to be able to adjust the therapeutic approach accordingly. Several computerized methods have been developed for estimating total CV risk [41–48]. Their values and limitations have been reviewed recently [49]. The Systematic COronary Risk Evaluation (SCORE) model has been developed based on large European cohort studies. The model estimates the risk of dying from CV (not just coronary) disease over 10 years based on age, gender, smoking habits, total cholesterol and SBP [43]. The SCORE model allows calibration of the charts for individual countries, which has been done for numerous European countries. At the international level, two sets of charts are provided: one for high-risk and one for low-risk countries. The electronic, interactive version of SCORE, known as Heart Score (available through www.heartscore.org), is adapted to also allow adjustment for the impact of high-density lipoprotein cholesterol on total CV risk. The charts and their electronic versions can assist in risk assessment and management but must be interpreted in the light of the physician's knowledge and experience, especially with regard to local conditions. Furthermore, the implication that total CV risk estimation is associated with improved clinical outcomes when compared with other strategies has not been adequately tested. Risk may be higher than indicated in the charts in: Sedentary subjects and those with central obesity; the increased relative risk associated with overweight is greater in younger subjects than in older subjects. Socially deprived individuals and those from ethnic minorities. Subjects with elevated fasting glucose and/or an abnormal glucose tolerance test, who do not meet the diagnostic criteria for diabetes. Individuals with increased triglycerides, fibrinogen, apolipoprotein B, lipoprotein(a) levels and high-sensitivity C-reactive protein. Individuals with a family history of premature CVD (before the age of 55 years in men and 65 years in women). In SCORE, total CV risk is expressed as the absolute risk of dying from CVD within 10 years. Because of its heavy dependence on age, in young patients, absolute total CV risk can be low even in the presence of high BP with additional risk factors. If insufficiently treated, however, this condition may lead to a partly irreversible high-risk condition years later. In younger subjects, treatment decisions should better be guided by quantification of relative risk or by estimating heart and vascular age. A relative-risk chart is available in the Joint European Societies’Guidelines on CVD Prevention in Clinical Practice [50], which is helpful when advising young persons. Further emphasis has been given to identification of OD, since hypertension-related asymptomatic alterations in several organs indicate progression in the CVD continuum, which markedly increases the risk beyond that caused by the simple presence of risk factors. A separate section (Section 3.7) is devoted to searching for asymptomatic OD [51−53], where evidence for the additional risk of each sub- clinical alteration is discussed. For more than a decade, international guidelines for the management of hypertension (the 1999 and 2003 WHO/International Society of Hypertension Guidelines and the 2003 and 2007 ESH/ESC Guidelines) [1,2,54,55] have stratified CV risk in different categories, based on BP category, CV risk factors, asymptomatic OD and presence of diabetes, symptomatic CVD or chronic kidney disease (CKD), as also done by the 2012 ESC prevention guidelines [50]. The classification in low, moderate, high and very high risk is retained in the current guidelines and refers to the 10-year risk of CV mortality as defined by the 2012 ESC prevention guidelines (Fig. 1) [50]. The factors on which the stratification is based are summarized in Table 4.FIGURE 1: Stratification of total CV risk in categories of low, moderate, high and very high risk according to SBP and DBP and prevalence of RFs, asymptomatic OD, diabetes, CKD stage or symptomatic CVD. Subjects with a high normal office but a raised out-of-office BP (masked hypertension) have a CV risk in the hypertension range. Subjects with a high office BP but normal out-of-office BP (white-coat hypertension), particularly if there is no diabetes, OD, CVD or CKD, have lower risk than sustained hypertension for the same office BP.TABLE 4: Factors—other than office BP—influencing prognosis; used for stratification of total CV risk in Fig. 12.4.2 Limitations All currently available models for CV risk assessment have limitations that must be appreciated. The significance of OD in determining calculation of overall risk is dependent on how carefully the damage is assessed, based on available facilities. Conceptual limitations should also be mentioned. One should never forget that the rationale of estimating total CV risk is to govern the best use of limited resources to prevent CVD; that is, to grade preventive measures in relation to the increased risk. Yet, stratification of absolute risk is often used by private or public healthcare providers to establish a barrier, below which treatment is discouraged. It should be kept in mind that any threshold used to define high total CV risk is arbitrary, as well as the use of a cut-off value leading to intensive interventions above this threshold and no action at all below. Finally, there is a strong effect of age on total CV risk models. It is so strong that younger adults (particularly women) are unlikely to reach high-risk levels even when they have more than one major risk factor and a clear increase in relative risk. By contrast, many elderly men (e.g. >70 years) reach a high total risk level whilst being at very little increased risk relative to their peers. The consequences are that most resources are concentrated in older subjects, whose potential lifespan is relatively short despite intervention, and little attention is given to young subjects at high relative risk despite the fact that, in the absence of intervention, their long-term exposure to an increased risk may lead to a high and partly irreversible risk situation in middle age, with potential shortening of their otherwise longer life expectancy. 2.4.3 Summary of recommendations on total cardiovascular risk assessment Total cardiovascular risk assessmentTable: No title available.3. DIAGNOSTIC EVALUATION The initial evaluation of a patient with hypertension should (i) confirm the diagnosis of hypertension, (ii) detect causes of secondary hypertension, and (iii) assess CV risk, OD and concomitant clinical conditions. This calls for BP measurement, medical history including family history, physical examination, laboratory investigations and further diagnostic tests. Some of the investigations are needed in all patients; others only in specific patient groups. 3.1 Bood pressure measurement 3.1.1 Office or clinic blood pressure At present, BP can no longer be estimated using a mercury sphygmomanometer in many—although not all—European countries. Auscultatory or oscillometric semiautomatic sphygmomanometers are used instead. These devices should be validated according to standardized protocols and their accuracy should be checked periodically through calibration in a technical laboratory [56]. Measurement of BP at the upper arm is preferred and cuff and bladder dimensions should be adapted to the arm circumference. In the event of a significant (>10 mmHg) and consistent SBP difference between arms, which has been shown to carry an increased CV risk [57], the arm with the higher BP values should be used. A between-arms difference is meaningful if demonstrated by simultaneous arm measurement; if one gets a difference between arms with sequential measurement, it could be due to BP variability. In elderly subjects, diabetic patients and in other conditions in which orthostatic hypotension may be frequent or suspected, it is recommended that BP be measured 1 min and 3 min after assumption of the standing position. Orthostatic hypotension—defined as a reduction in SBP of >20 mmHg or in DBP of >10 mmHg within 3 min of standing—has been shown to carry a worse prognosis for mortality and CV events [58,59]. If feasible, automated recording of multiple BP readings in the office with the patient seated in an isolated room, though providing less information overall, might be considered as a means to improve reproducibility and make office BP values closer to those provided by daytime ABPM or HBPM [60,61]. BP measurements should always be associated with measurement of heart rate, because resting heart rate values independently predict CV morbid or fatal events in several conditions, including hypertension [62,63]. Instructions for correct office BP measurements are summarized in Table 5.TABLE 5: Office blood pressure measurement3.1.2 Out-of-office blood pressure The major advantage of out-of-office BP monitoring is that it provides a large number of BP measurements away from the medical environment, which represents a more reliable assessment of actual BP than office BP. Out-of-office BP is commonly assessed by ABPM or HBPM, usually by self-measurement. A few general principles and remarks hold for the two types of monitoring, in addition to recommendations for office BP measurement [64–67]: The procedure should be adequately explained to the patient, with verbal and written instructions; in addition, self-measurement of BP requires appropriate training under medical supervision. Interpretation of the results should take into account that the reproducibility of out-of-office BP measurements is reasonably good for 24-h, day and night BP averages but less for shorter periods within the 24 hs and for more complex and derived indices [68] ABPM and HBPM provide somewhat different information on the subject's BP status and risk and the two methods should thus be regarded as complementary, rather than competitive or alternative. The correspondence between measurements with ABPM and HBPM is fair to moderate. Office BP is usually higher than ambulatory and home BP and the difference increases as office BP increases. Cut-off values for the definition of hypertension for home and ambulatory BP, according to the ESH Working Group on BP Monitoring, are reported in Table 6[64–67]. Devices should have been evaluated and validated according to international standardized protocols and should be properly maintained and regularly calibrated; at least every 6 months. The validation status can be obtained on dedicated websites. TABLE 6: Definitions of hypertension by office and out-of-office blood pressure levels3.1.2.1. Ambulatory blood pressure monitoring 3.1.2.1.1. Methodological aspects A number of methodological aspects have been addressed by the ESH Working Group on Blood Pressure Monitoring [64,65]. ABPM is performed with the patient wearing a portable BP measuring device, usually on the nondominant arm, for a 24–25 h period, so that it gives information on BP during daily activities and at night during sleep. At the time of fitting of the portable device, the difference between the initial values and those from BP measurement by the operator should not be greater than 5 mmHg. In the event of a larger difference, the ABPM cuff should be removed and fitted again. The patient is instructed to engage in normal activities but to refrain from strenuous exercise and, at the time of cuff inflation, to stop moving and talking and keep the arm still with the cuff at heart level. The patient is asked to provide information in a diary on symptoms and events that may influence BP, in addition to the times of drug ingestion, meals and going to- and rising from bed. In clinical practice, measurements are often made at 15 min intervals during the day and every 30 min overnight; excessive intervals between BP readings should be avoided because they reduce the accuracy of 24-h BP estimates [69]. It may be recommended that measurements be made at the same frequency during the day and night—for example every 20 min throughout. The measurements are downloaded to a computer and a range of analyses can be performed. At least 70% of BPs during daytime and night-time periods should be satisfactory, or else the monitoring should be repeated. The detection of artifactual readings and the handling of outlying values have been subject to debate but, if there are sufficient measurements, editing is not considered necessary and only grossly incorrect readings should be deleted. It is noteworthy that readings may not be accurate when the cardiac rhythm is markedly irregular [70]. 3.1.2.1.2 Daytime, night-time and 24-h blood pressure In addition to the visual plot, average daytime, night-time and 24-h BP are the most commonly used variables in clinical practice. Average daytime and night-time BP can be calculated from the diary on the basis of the times of getting up and going to bed. An alternative method is to use short, fixed time periods, in which the rising and retiring periods—which differ from patient to patient—are eliminated. It has, for example, been shown that average BPs from 10 am to 8 pm and from midnight
0

2021 ESC Guidelines on cardiovascular disease prevention in clinical practice

Frank Visseren et al.Aug 30, 2021
The ESC Guidelines represent the views of the ESC and were produced after careful consideration of the scientific and medical knowledge and the evidence available at the time of their publication.The ESC is not responsible in the event of any contradiction, discrepancy and/or ambiguity between the ESC Guidelines and any other official recommendations or guidelines issued by the relevant public health authorities, in particular in relation to good use of healthcare or therapeutic strategies.Health professionals are encouraged to take the ESC Guidelines fully into account when exercising their clinical judgment, as well as in the determination and the implementation of preventive, diagnostic or therapeutic medical strategies; however, the ESC Guidelines do not override, in any way whatsoever, the individual responsibility of health professionals to make appropriate and accurate decisions in consideration of each patient's health condition and in consultation with that patient and, where appropriate and/or necessary, the patient's caregiver.Nor do the ESC Guidelines exempt health professionals from taking into full and careful consideration the relevant official updated recommendations or guidelines issued by the competent public health authorities, in order to manage each patient's case in light of the scientifically accepted data pursuant to their respective ethical and professional obligations.It is also the health professional's responsibility to verify the applicable rules and regulations relating to drugs and medical devices at the time of prescription.
0

2018 ESC/ESH Guidelines for the management of arterial hypertension

Bryan Williams et al.Oct 1, 2018
Document reviewers: Guy De Backer (ESC Review Co-ordinator) (Belgium), Anthony M. Heagerty (ESH Review Co-ordinator) (UK), Stefan Agewall (Norway), Murielle Bochud (Switzerland), Claudio Borghi (Italy), Pierre Boutouyrie (France), Jana Brguljan (Slovenia), Héctor Bueno (Spain), Enrico G. Caiani (Italy), Bo Carlberg (Sweden), Neil Chapman (UK), Renata Cifkova (Czech Republic), John G. F. Cleland (UK), Jean-Philippe Collet (France), Ioan Mircea Coman (Romania), Peter W. de Leeuw (The Netherlands), Victoria Delgado (The Netherlands), Paul Dendale (Belgium), Hans-Christoph Diener (Germany), Maria Dorobantu (Romania), Robert Fagard (Belgium), Csaba Farsang (Hungary), Marc Ferrini (France), Ian M. Graham (Ireland), Guido Grassi (Italy), Hermann Haller (Germany), F. D. Richard Hobbs (UK), Bojan Jelakovic (Croatia), Catriona Jennings (UK), Hugo A. Katus (Germany), Abraham A. Kroon (The Netherlands), Christophe Leclercq (France), Dragan Lovic (Serbia), Empar Lurbe (Spain), Athanasios J. Manolis (Greece), Theresa A. McDonagh (UK), Franz Messerli (Switzerland), Maria Lorenza Muiesan (Italy), Uwe Nixdorff (Germany), Michael Hecht Olsen (Denmark), Gianfranco Parati (Italy), Joep Perk (Sweden), Massimo Francesco Piepoli (Italy), Jorge Polonia (Portugal), Piotr Ponikowski (Poland), Dimitrios J. Richter (Greece), Stefano F. Rimoldi (Switzerland), Marco Roffi (Switzerland), Naveed Sattar (UK), Petar M. Seferovic (Serbia), Iain A. Simpson (UK), Miguel Sousa-Uva (Portugal), Alice V. Stanton (Ireland), Philippe van de Borne (Belgium), Panos Vardas (Greece), Massimo Volpe (Italy), Sven Wassmann (Germany), Stephan Windecker (Switzerland), Jose Luis Zamorano (Spain). The disclosure forms of all experts involved in the development of these Guidelines are available on the ESC website www.escardio.org/guidelines
0

Reappraisal of European guidelines on hypertension management: a European Society of Hypertension Task Force document

Giuseppe Mancia et al.Oct 21, 2009
Abbreviations ACE: angiotensin-converting enzyme; BP: blood pressure; DBP: diastolic blood pressure; eGFR: estimated glomerular filtration rate; ESC: European Society of Cardiology; ESH: European Society of Hypertension; ET: endothelin; IMT: carotid intima-media thickness; JNC: Joint National Committee; LVH: left ventricular hypertrophy; LVM: left ventricular mass; PDE-5: phosphodiesterase-5; PPAR-γ: peroxisome proliferators-activated receptor-γ; PWV: pulse wave velocity; SBP: systolic blood pressure; WHO: World Health Organization. Introduction In the 2 years since the publication of the 2007 guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC) [1], research on hypertension has actively been pursued and the results of new important studies (including several large randomized trials of antihypertensive therapy) have been published. Some of these studies have reinforced the evidence on which the recommendations of the 2007 ESH/ESC guidelines were based. However, other studies have widened the information available in 2007, modifying some of the previous concepts, and suggesting that new evidence-based recommendations could be appropriate. The aim of this document of the ESH is to address a number of studies on hypertension published in the last 2 years in order to assess their contribution to our expanding knowledge of hypertension. Furthermore, some critical appraisal of the current recommendations of the ESH/ESC, as well as of other guidelines, might be a useful step toward the preparation of a third version of the European guidelines in the future. The most important conclusions are summarized in boxes. The points that will be discussed are reported in Box 1.Box. 1Assessment of subclinical organ damage for stratification of total cardiovascular risk The 2007 ESH/ESC guidelines recommend total cardiovascular risk be evaluated in each patient to decide about important aspects of treatment: the blood pressure (BP) threshold at which to commence drug administration, the target BP to be reached by treatment, the use of two-drug combinations as the initial treatment step, and the possible addition to the antihypertensive treatment regimen of lipid-lowering and antiplatelet agents [1]. Among the criteria to assess total cardiovascular risk, the European guidelines consider subclinical organ damage to be a very important component, because asymptomatic alterations of the cardiovascular system and the kidney are crucial intermediate stages in the disease continuum that links risk factors such as hypertension to cardiovascular events and death. On the basis of a number of criteria (prognostic importance, prevalence in the population, availability and cost of the assessment procedures, etc.), the 2007 European guidelines considered detection of organ damage as important for the diagnostic and prognostic evaluation of hypertensive patients. They further subdivided the different types of organ damage into (1) those that can be identified by relatively simple and cheap procedures [electrocardiogram, serum creatinine, estimated glomerular filtration rate (eGFR), and measurement of urinary protein excretion in order to detect microalbuminuria or proteinuria], which were thus regarded as suitable for routine search in the whole hypertensive population, and (2) those that require more complex procedures or instrumentations (echocardiogram, carotid ultrasonography, pulse wave velocity), which were for this reason only recommended for a more in-depth characterization of the hypertensive patient. Since then, other studies have added useful information on the importance of detecting subclinical organ damage in the hypertensive population, strengthening the recommendation to use the most easily available and the least costly procedures in the routine examination of individuals with hypertension. Heart A few recent papers have revived interest in the power of the electrocardiogram to predict the risk of cardiovascular events. In a prospective survey including 7495 American adults, a new indicator of left ventricular hypertrophy (LVH), the Novacode estimate of left ventricular mass index that is based on both voltage and strain pattern criteria, has been reported to be significantly related to 10-year cardiovascular mortality [2]. The relation remained significant after adjusting for age, SBP, smoking, cholesterol, and diabetes. Furthermore, in the LIFE trial, the investigators have reported that in hypertensive patients with electrocardiographic LVH, left bundle branch block identifies individuals at increased risk of cardiovascular mortality (hazard ratio 1.6), sudden cardiovascular death (hazard ratio 3.5), and hospitalization for heart failure (hazard ratio 1.7) [3]. Finally, a very recent prospective study [4] focused on the R-wave voltage in lead aVL as being rather closely associated with left ventricular mass (LVM), and additionally predictive of incident cardiovascular events even when hypertension is not accompanied by electrocardiographic LVH (9% higher risk for each 0.1 mV higher R-wave). Additional evidence is also available on the predictive power of cardiac abnormalities, as detected by echocardiography, an approach of continuing interest because of its ability to more directly and precisely quantify LVM and geometric LVH patterns. A retrospective study has recently updated information from more than 35 000 normotensive and hypertensive participants with normal left ventricular ejection fraction [5]. Despite normal left ventricular function, an abnormal left ventricular geometric pattern was found in 46% of the patients (35% left ventricular concentric remodeling and 11% LVH), and the associated risk of all-cause mortality was twice as large as that of patients with normal left ventricular geometry. Although in another study on an African–American population, the relationship between left ventricular geometric patterns and all-cause mortality was markedly attenuated after adjusting for baseline variables, and remained significant only in men [6], the increased risk associated with LVH has been confirmed by other observations. In a prospective study on a cohort of 1652 Greek hypertensive patients followed up for 6 years, echocardiographic LVH was significantly associated with either a composite of all-cause mortality and cardiovascular events (hazard ratio 1.53) and with stroke (hazard ratio 2.01), after adjustment for major cardiovascular risk factors [7]. Furthermore, a retrospective analysis of 1447 Japanese hypertensive patients who participated in the CASE-J trial showed that cardiovascular events occurred about 2.6 times more frequently in patients with a LVM index 125 g/m2 or more compared with those with a LVM index below this value [8]. Finally, in the PAMELA population, echocardiographic LVH was associated with a four-fold to five-fold significant increase in cardiovascular morbidity and mortality when data were adjusted for a large number of potential confounders, including office, home, and ambulatory BP values. A 10% increase in LVM increased the risk more markedly when baseline LVM was already abnormal, but an increasing risk was evident also when calculated from LVM values within the normal range [9]. Blood vessels The relationship of carotid intima–media thickness (IMT) and plaques with subsequent cardiovascular events, already discussed in the 2007 guidelines, has been further strengthened by data from ELSA [10], which have shown that baseline carotid IMT predicts cardiovascular events independent of BP (clinic and ambulatory) and this occurs both for the IMT value at the carotid bifurcations and for the IMT value at the level of the common carotid artery. This suggests that both atherosclerosis (reflected by the IMT value at the bifurcations) and vascular hypertrophy (reflected by the common carotid IMT) exert an adverse prognostic effect in addition to that of high BP. An adverse prognostic significance of carotid plaques (hazard ratio 2.3) has also been reported in a sample of residents of the Copenhagen County free of overt cardiovascular disease, which was prospectively followed for about 13 years [11]. Evidence has also accrued on the adverse prognostic value of arterial stiffening. In the Copenhagen County population, an increased pulse wave velocity (PWV >12 m/s) was associated with a 50% increase in the risk of a cardiovascular event [11]. Furthermore, an independent predictive value of PWV for cardiovascular events has been shown in Japanese men followed for 8.2 years [12]. Finally, indirect indices of aortic stiffness and wave reflection, such as central BP and augmentation index, have been confirmed as independent predictors of cardiovascular events in two recent studies [13,14]. In particular, in one of these studies of 1272 normotensive and untreated hypertensive patients, only central SBP consistently and independently predicted cardiovascular mortality after adjustment for various cardiovascular risk factors, including LVM and carotid IMT [14]. However, it should be emphasized that in most available studies, the additive predictive value of central BP beyond brachial pressure appears limited, which leaves the question whether central BP measurements should be regularly considered in the clinical profiling of hypertensive patients in need of further investigation. Kidney Several new data [15] reinforce the already solid evidence on the prognostic value of eGFR that was available at the time of the 2007 guidelines [1]. In the population of Gubbio (Italy), an eGFR in the lowest decile was associated with a significantly higher incidence of cardiovascular events (hazard ratio 2.14) [16], and in the above-mentioned Greek study [7], an eGFR between 15 and 59 ml/min per 1.73 m2 was associated with a 66% increase in the composite endpoint of all cause mortality and cardiovascular events after adjustment for baseline cardiovascular risk and independent of LVH [7]. Likewise, in a post hoc analysis of data from the VALUE trial [17], eGFR according to the MDRD formula was significantly predictive of all outcomes except stroke (with hazard ratios between 1.23 and 1.70 according to the different outcomes) and was more sensitive than calculation of the creatinine clearance value according to the Cockroft–Gault formula, which was only predictive of all-cause mortality. The baseline eGFR by the MDRD formula turned out to be importantly predictive of both renal and cardiovascular events also in the large number (n = 11 140) of type 2 diabetic patients included in the ADVANCE trial, even when data were adjusted for many potential confounders, including the concomitant urinary protein excretion value. For every 50% reduction of baseline eGFR the risk of cardiovascular events significantly increased 2.2-fold, the concomitant increase in the risk of cardiovascular death and renal events being 3.6-fold and 63.6-fold, respectively [18]. New evidence is also available to support the already large amount of data in favor of the prognostic value of the moderate increase in urinary protein excretion, defined as microalbuminuria [19,20]. In two population studies, the Gubbio study [16] and the Copenhagen County study [11], microalbuminuria was confirmed as an important predictor of cardiovascular outcome, the adjusted hazard ratio being, respectively, 2.15-fold and 3.10-fold greater in patients with microalbuminuria compared with those without. In the Gubbio study, the association of microalbuminuria with low eGFR had a multiplicative effect (hazard ratio 5.93). In the ADVANCE trial [18], a change from one clinical stage of albuminuria to the next was associated with a 1.6-fold, 2.0-fold, and 3.3-fold increase in the multivariate-adjusted risk of cardiovascular events, cardiovascular death, and renal events, respectively, this being the case also when the change from normoalbuminuria to microalbuminuria was involved. The effects of higher baseline urinary protein excretion and reduced eGFR were independent of each other and the association of microalbuminuria and an eGFR value less than 60 ml/min per 1.73 m2 brought about an additional increase in risk: 3.2-fold for cardiovascular events, 5.9-fold for cardiovascular mortality, and 22.2-fold for renal events. Additional measures of organ damage The 2007 European guidelines mention a number of additional measures of organ damage for which evidence of prognostic relevance was available, but no use in the clinical practice could be foreseen because of drawbacks of practical relevance, such as the high cost and low availability of the devices involved, the complexity and time consumption inherent in the procedures, and in several instances the lack of standardization of the values obtained between laboratories and across countries. Based on the evidence available in the last 2 years, no addition to the measures of organ damage included in the 2007 guidelines can be supported, although the growing availability of more sophisticated techniques and the reduced cost of their use brought about by technological progress, makes future additions likely. In this context, the use of nuclear magnetic resonance deserves special mention. Although not prospective in nature, a very recent study systematically employing nuclear magnetic resonance imaging in a group of 142 hypertensive patients without overt cardiovascular disease has provided the interesting information that silent cerebrovascular lesions are even more prevalent (44%) than cardiac (21%) and renal (26%) subclinical damage, and do frequently occur in the absence of other signs of organ damage [21]. Increasing evidence also relates these lesions to cognitive dysfunction [22,23], a problem of primary importance because of the senescence of the population [24]. With magnetic resonance imaging becoming more and more frequently employed in diagnostic procedures, silent cerebrovascular disease is likely to become more frequently investigated in prognostic and therapeutic studies in hypertension. The prognostic value of structural alterations in small subcutaneous arteries has recently been confirmed by two independent studies [25,26]. However, the invasive nature of this measurement prevents larger scale application of this method. A new noninvasive method for assessing the media–lumen ratio of small retinal arteries seems promising for large-scale evaluation [27], although its predictive value remains to be investigated. Evidence remains inconclusive on a marker of a vascular alteration that has been actively investigated in the past decade, namely endothelial dysfunction. In a population sample of individuals without overt cardiovascular disease (67% with hypertension and 22% with diabetes mellitus) from the Northern Manhattan study, measures of flow-mediated vasodilatation predicted the incidence of cardiovascular events, but this effect was not independent of traditional cardiovascular risk factors [28]. Likewise, in the large cohort of elderly patients of the Cardiovascular Health Study, flow-mediated vasodilatation added very little to the prognostic accuracy of traditional risk factors [29]. On the contrary, Muiesan et al.[30] have recently reported that in a small cohort (n = 172) of uncomplicated hypertensive persons followed for about 8 years, flow-mediated vasodilatation of the brachial artery below the median value was significantly associated with a 2.7-fold increase in incident cardiovascular events even after adjusting for all major cardiovascular risk factors. However, the same group of investigators also have reported that endothelial dysfunction in the subcutaneous vessels of hypertensive patients was not predictive of cardiovascular events [31], possibly because endothelial dysfunction in different vascular beds may have a different prognostic significance. Clearly, the prognostic value of endothelial dysfunction in hypertension remains to be further elucidated. It should be emphasized that the addition of new measures of organ damage to the assessment of total cardiovascular risk requires not only the demonstration of their prognostic importance, but it has to improve the power to predict the incidence of cardiovascular events. This is by no means easy to be documented, and indeed data are available that in some instances new risk factors of individual prognostic significance do not improve, when added to the others, the accuracy by which cardiovascular risk can be quantified, thus only making the diagnostic procedures more complex, time consuming, and costly. This is exemplified by the recent results of the Framingham study, which showed that inclusion of inflammatory markers did not lead to any substantial improvement in the accuracy (sensitivity and specificity) by which total cardiovascular risk was assessed [32]. Subclinical organ damage as a marker of high cardiovascular risk Although subclinical organ damage undoubtedly increases the level of cardiovascular risk, the question arises whether it always brings the patient into the high-risk category, that is, an absolute risk of at least 20 cardiovascular events in 10 years per 100 patients. The 2007 European guidelines classify hypertensive patients with subclinical organ damage among those with a high total cardiovascular risk. This is further supported by more recent evidence on the contribution of subclinical cardiac, vascular, and renal damage to the total cardiovascular risk. As regards to subclinical cardiac damage, analysis of the data provided by some of the major prospective studies indicates that in hypertensive patients, echocardiographic LVH, particularly if of the concentric variety, is associated with an incidence of cardiovascular events equal to or above 20% in 10 years [5,7,33]. An incidence greater than 20% in 10 years has also been reported for men, but not for women, with echocardiographic LVH in the Framingham population study [34]. Finally, in the hypertensive patients of the CASE-J trial, echocardiographic LVH was associated with a 10-year incidence of cardiovascular events of 24% compared with the 10% incidence seen in patients without LVH [8]. Similar evidence exists for vascular damage. In the elderly patients of the Cardiovascular Health Study [35], the 10-year incidence of major cardiovascular events was higher than 20% when the common carotid IMT was 1.06 mm or more (fourth and fifth quintiles) and below 10% in those with an IMT in the first quintile (<0.87 mm). In the hypertensive patients of the ELSA study [10], the incidence of all (major and minor) cardiovascular events was greater than 20% in 10 years when IMT (common carotid plus bifurcation) was in the third and fourth quartiles (≥1.16 mm) or when at least one plaque had been detected. In contrast, patients with IMT in the first or the smallest IMT quartile (<0.98 mm) had incident cardiovascular events below 10% in 10 years. In hypertensive patients, the 10-year incidence of major cardiovascular events was higher than 20% when carotid-femoral PWV (aortic stiffness) was 16.3 m/s or more (fifth quintile) and below 10% in those with an aortic stiffness in the first and second quintiles [36]. Furthermore, even asymptomatic peripheral vascular disease as detected by a positive ankle-brachial index has prospectively been found to be associated in men with an incidence of cardiovascular events approaching 20% in 10 years [37,38]. Finally, old and recent evidence leaves little doubt that in hypertensive individuals, renal subclinical organ damage is associated with a 10-year risk of cardiovascular events of 20% or more. It has already been reported some years ago that reduced renal function, defined by a serum creatinine more than 1.5 mg/dl is associated with a 10-year incidence of cardiovascular events 20% or more [39,40]. In the recent prospective cohort of Greek hypertensive patients [7], a low eGFR was associated with incident cardiovascular events of about 20% in 10 years, an even higher incidence being observed when low eGFR occurred together with LVH. Furthermore, in the hypertensive patients prospectively studied by Jensen et al.[41], the incidence of ischemic heart disease was 20% in 10 years in the presence of microalbuminuria and of only 5% in its absence. Also, in the Gubbio population study, the incidence of cardiovascular events was greater than 20% in 10 years, but only in those individuals in whom microalbuminuria in the highest decile was associated with eGFR in the lowest decile [16]. Over 78% of these patients had hypertension. The 2007 European guidelines classify patients with subclinical organ damage as being at high risk also when BP is in the high normal range, but admittedly evidence that this is invariably the case is less clear. In the general population of the Framingham study, no information was made available on the prognostic value of echographic LVH, separately in the normotensive and hypertensive population [34]. Furthermore, in the same population, the association of renal dysfunction with cardiovascular events was lost after adjustment for cardiovascular risk factors, including BP [42]. In the PREVEND population study [43], microalbuminuria (20–200 mg/l) was associated with only a 4.7% cardiovascular mortality in 10 years, that is, a moderate absolute risk according to the SCORE classification [44], and in the nonhypertensive, nondiabetic individuals of the Framingham study, a microalbuminuria above the median value was associated with a rate of incident cardiovascular events of only 8.8% in 10 years compared with a 2.9% rate in individuals with microalbuminuria below the median value [45]. Prognostic value of treatment-induced modifications of subclinical organ damage The 2007 European guidelines have emphasized that treatment-induced changes of organ damage affect the incidence of cardiovascular events, thereby recommending that organ damage be measured also during treatment. Reference was made to the data obtained in the LIFE study [46], in which hypertensive patients in whom treatment was accompanied by regression of echocardiographic LVH or a delayed increase in LVM had less incident cardiovascular events, including sudden death, than those in whom no regression from or earlier progression to LVH occurred. It was also mentioned that both in LIFE [47] and in other studies [48], a similar relationship was found between treatment-induced changes in proteinuria and renal or cardiovascular events. This means that, compared with patients in whom treatment had little or no antiproteinuric effect, reduction in proteinuria was associated with a reduced incidence of cardiovascular events and less progression to end-stage renal disease. Since 2007, data on the relationship between treatment-induced changes in cardiac damage and cardiovascular protection have been enriched by further analyses of the LIFE study, which have shown that also treatment-induced changes in left atrial dimension [49], left ventricular geometry [50], and in electrocardiographic signs of LVH correlate with incident cardiovascular event rate [51]. Furthermore, there have been reports that in hypertension, inappropriate changes in LVM during treatment adversely affect cardiovascular prognosis [52]. Finally, the predictive power of treatment-induced IMT changes in the carotid arteries has for the first time been investigated in a recent analysis of ELSA trial data. This analysis failed to show a predictive role of treatment-dependent IMT changes, but the smallness of these changes compared with the large individual differences in baseline IMT makes it difficult to draw definitive conclusions [10]. The correlation of treatment-induced changes in proteinuria with cardiovascular event incidence has been challenged by some findings of the ONTARGET trial. In this trial on a large number of high or very high cardiovascular risk patients, the group treated with a combination of an angiotensin-converting enzyme (ACE) inhibitor and an angiotensin receptor antagonist showed, throughout the study duration, less increase in proteinuria than the group on monotherapy with one or the other drug, but this relative antiproteinuric effect was not accompanied by a reduction in cardiovascular events and was even associated with an increase in renal events [53]. However, these results do not necessarily undermine the important concept that treatment-induced changes in proteinuria can be a marker of the more or less pronounced beneficial effects of treatment because alternative explanations for the ONTARGET results are possible. For example, in ONTARGET, most patients had a normal renal function and few (4%) exhibited overt proteinuria, which resulted in a very limited number of the endpoint that matters for renal protection, that is, chronic renal failure. Furthermore, in the very high cardiovascular risk population studied, the powerful blockade of the renin–angiotensin system provided by the ACE inhibitor and angiotensin receptor antagonist combination might have exhibited an adverse effect of its own that superseded and masked the beneficial influence associated with a reduction in proteinuria. In favor of this beneficial influence are some recent analyses of the ADVANCE study in patients with type 2 diabetes. In these patients, on-treatment values of proteinuria showed a close independent association with both renal and cardiovascular events, the contribution of proteinuria being unrelated to the concomitant values of eGFR [18]. Conclusion Evidence on the important prognostic role of subclinical organ damage continues to grow. In both hypertensive patients and the general population, the presence of electrocardiographic and echocardiographic LVH, a carotid plaque or thickening, an increased arterial stiffness, a reduced eGFR (assessed by the MDRD formula), or microalbuminuria or proteinuria substantially increases the total cardiovascular risk, usually moving hypertensive patients into the high absolute risk range. The changes in electrocardiographically or echocardiographically detected LVH induced by treatment reflect the effects on cardiovascular events, thereby offering valuable information on whether patients are more or less effectively protected by the adopted treatment strategy. Despite some recent inconsistent results [53], solid evidence suggests that this is the case also for treatment-induced changes in urinary protein excretion, although the problem remains open for treatment-induced vascular changes. Thus, assessing the presence of subclinical organ damage is of crucial importance in the hypertensive population. This assessment can make use of simple and cheap procedures that can provide routine information before and at various times during treatment. It can also rely on more sophisticated approaches that can further characterize patients' cardiac and vascular status. In all instances, multiple organ damage assessment is useful because of the evidence that in the presence of two signs of organ damage (even when inherent to the same organ), cardiovascular risk may be more markedly increased, with an almost inevitable upgrading to the high cardiovascular risk category [7,16]. It is not clear from published data whether subclinical organ damage can bring total cardiovascular risk to the high range also in patients with high normal BP. However, organ damage when it is particularly pronounced, or affects multiple organs, or is accompanied by metabolic risk factors, is associated with a two-fold or three-fold increase in relative risk also in normotensive individuals [11,54–56], and the 2007 guidelines recommend considering relative risk as a guide for the need of treatment in young and middle-aged patients. In this context, it is also important to emphasize that the occurrence of undetected organ damage in patients that doctors decide to treat probably explains the apparently paradoxical findings of several observational studies that the incidence of cardiovascular events is higher in treated than in untreated hypertensive patients even after adjustment for usual cardiovascular risk factors and past clinical history [57–62]. This is consistent with the concept that antihypertensive treatment even if beneficial cannot usually take a high total risk back to a low-risk category [63]. These findings presumably reflect the fact that in medical practice, BP-lowering treatment is often deferred until organ damage occurs, when complete reversibility is not achievable [63,64]. More extensive use of organ damage assessment may thus help to reach a more timely decision about the initiation of treatment and thus favor its greater success. Some of the issues discussed in Assessment of subclinical organ damage for stratification of total cardiovascular risk section are summarized in Box 2.Box. 2Treatment approach Major guidelines [1,65–70] on the management of hypertension recommend the initiation of antihypertensive drugs in all patients with a SBP 140 mmHg or more and/or a DBP 90 mmHg or more, and to adjust the treatment strategy in order for the patients to be below these values. They further recommend drug treatment to be initiated within a lower BP range, that is, a SBP between 130 and 139 mmHg and a DBP between 85 and 89 mmHg in patients with diabetes or a history of cardiovascular or renal disease, aiming at achieving SBP/DBP values <130/80 mmHg. The 2007 ESH/ESC guidelines [1] have accompanied these recommendations with information on the evidence they are based upon, and a critical reappraisal of this issue has recently been undertaken by members of the present Task Force [71], in the light of further information provided by recent trials. The purpose of the present ESH document is to clarify the size and the type of evidence on which these recommendations are based, and thus help the planning and conduc
0

European Society of Hypertension Position Paper on Ambulatory Blood Pressure Monitoring

Eoin O’Brien et al.Aug 14, 2013
Ambulatory blood pressure monitoring (ABPM) is being used increasingly in both clinical practice and hypertension research. Although there are many guidelines that emphasize the indications for ABPM, there is no comprehensive guideline dealing with all aspects of the technique. It was agreed at a consensus meeting on ABPM in Milan in 2011 that the 34 attendees should prepare a comprehensive position paper on the scientific evidence for ABPM. This position paper considers the historical background, the advantages and limitations of ABPM, the threshold levels for practice, and the cost–effectiveness of the technique. It examines the need for selecting an appropriate device, the accuracy of devices, the additional information and indices that ABPM devices may provide, and the software requirements. At a practical level, the paper details the requirements for using ABPM in clinical practice, editing considerations, the number of measurements required, and the circumstances, such as obesity and arrhythmias, when particular care needs to be taken when using ABPM. The clinical indications for ABPM, among which white-coat phenomena, masked hypertension, and nocturnal hypertension appear to be prominent, are outlined in detail along with special considerations that apply in certain clinical circumstances, such as childhood, the elderly and pregnancy, and in cardiovascular illness, examples being stroke and chronic renal disease, and the place of home measurement of blood pressure in relation to ABPM is appraised. The role of ABPM in research circumstances, such as pharmacological trials and in the prediction of outcome in epidemiological studies is examined and finally the implementation of ABPM in practice is considered in relation to the issue of reimbursement in different countries, the provision of the technique by primary care practices, hospital clinics and pharmacies, and the growing role of registries of ABPM in many countries.
Load More