KH
Kyoung‐Sik Han
Author with expertise in Advanced Cryptographic Schemes and Protocols
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
362
h-index:
34
/
i10-index:
83
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

A Full RNS Variant of Approximate Homomorphic Encryption

Jung Cheon et al.Jan 1, 2019
The technology of Homomorphic Encryption (HE) has improved rapidly in a few years. The newest HE libraries are efficient enough to use in practical applications. For example, Cheon et al. (ASIACRYPT’17) proposed an HE scheme with support for arithmetic of approximate numbers. An implementation of this scheme shows the best performance in computation over the real numbers. However, its implementation could not employ a core optimization technique based on the Residue Number System (RNS) decomposition and the Number Theoretic Transformation (NTT). In this paper, we present a variant of approximate homomorphic encryption which is optimal for implementation on standard computer system. We first introduce a new structure of ciphertext modulus which allows us to use both the RNS decomposition of cyclotomic polynomials and the NTT conversion on each of the RNS components. We also suggest new approximate modulus switching procedures without any RNS composition. Compared to previous exact algorithms requiring multi-precision arithmetic, our algorithms can be performed by using only word size (64-bit) operations. Our scheme achieves a significant performance gain from its full RNS implementation. For example, compared to the earlier implementation, our implementation showed speed-ups 17.3, 6.4, and 8.3 times for decryption, constant multiplication, and homomorphic multiplication, respectively, when the dimension of a cyclotomic ring is 32768. We also give experimental result for evaluations of some advanced circuits used in machine learning or statistical analysis. Finally, we demonstrate the practicability of our library by applying to machine learning algorithm. For example, our single core implementation takes 1.8 min to build a logistic regression model from encrypted data when the dataset consists of 575 samples, compared to the previous best result 3.5 min using four cores.
1

Better Bootstrapping for Approximate Homomorphic Encryption

Kyoung‐Sik Han et al.Jan 1, 2020
After Cheon et al. (Asiacrypt’ 17) proposed an approximate homomorphic encryption scheme, HEAAN, for operations between encrypted real (or complex) numbers, the scheme is widely used in a variety of fields with needs on privacy-preserving in data analysis. After that, a bootstrapping method for HEAAN is proposed by Cheon et al. (Eurocrypt’ 18) with modulus reduction being replaced by a sine function. In this paper, we generalize the Full-RNS variant of HEAAN proposed by Cheon et al. (SAC, 19) to reduce the number of temporary moduli used in key-switching. As a result, our scheme can support more depth computations without bootstrapping while ensuring the same level of security. We also propose a new polynomial approximation method to evaluate a sine function in an encrypted state, which is specialized for the bootstrapping for HEAAN. Our method considers a ratio between the size of a plaintext and the size of a ciphertext modulus. Consequently, it requires a smaller number of non-scalar multiplications, which is about half of the Chebyshev method. With our variant of the Full-RNS scheme and a new sine evaluation method, we firstly implement bootstrapping for a Full-RNS variant of approximate homomorphic encryption scheme. Our method enables bootstrapping for a plaintext in the space $${\mathbb {C}}^{16384}$$ to be completed in 52 s while preserving 11 bit precision of each slot.