CF
Carlos Ferreira
Author with expertise in Wind Energy Technology and Aerodynamics
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
16
(88% Open Access)
Cited by:
808
h-index:
31
/
i10-index:
75
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Visualization by PIV of dynamic stall on a vertical axis wind turbine

Carlos Ferreira et al.Aug 2, 2008
The aerodynamic behavior of a vertical axis wind turbine (VAWT) is analyzed by means of 2D particle image velocimetry (PIV), focusing on the development of dynamic stall at different tip speed ratios. The VAWT has an unsteady aerodynamic behavior due to the variation with the azimuth angle θ of the blade’s sections’ angle of attack, perceived velocity and Reynolds number. The phenomenon of dynamic stall is then an inherent effect of the operation of a VAWT at low tip speed ratios, impacting both loads and power. The present work is driven by the need to understand this phenomenon, by visualizing and quantifying it, and to create a database for model validation. The experimental method uses PIV to visualize the development of the flow over the suction side of the airfoil for two different reference Reynolds numbers and three tip speed ratios in the operational regime of a small urban wind turbine. The field-of-view of the experiment covers the entire rotation of the blade and almost the entire rotor area. The analysis describes the evolution of the flow around the airfoil and in the rotor area, with special focus on the leading edge separation vortex and trailing edge shed vorticity development. The method also allows the quantification of the flow, both the velocity field and the vorticity/circulation (only the results of the vorticity/circulation distribution are presented), in terms of the phase locked average and the random component.
0

Lift-Induced Wake Re-Energization for a VAWT-Based Multi-Rotor System

T Broertjes et al.Jun 1, 2024
Abstract This study explores the performance and near-wake dynamics of a VAWT-based Multi-Rotor System in both its original configuration and in the presence of external lift-generating devices, specifically employed for wake control operations. The wake of a scaled VAWT-based MRS was measured in a wind tunnel using Particle Tracking Velocimetry. Lift-generating devices, including a 3-element cascading wing on top and a single-element wing in the middle of the MRS, were used to enhance wake control and deflection. Measurements in the near-wake revealed notable differences between configurations with and without these devices. Without them, the wake remained concentrated in the actuator surface’s projected downstream area, with minimal crossflow diffusion. Conversely, the configuration with lift-generating devices exhibited significant wake deformation, including axial expansion and lateral contraction, promoting streamwise momentum recovery. As a result, increased power recovery was found downstream of such a system compared to the clean MRS. These findings underscore the potential of such systems, particularly when equipped with lift-generating devices, to manipulate wake dynamics and enhance wind farm efficiency, thereby advancing innovative wind energy solutions.
0

Enhancing Wind Farm Efficiency Through Active Control of the Atmospheric Boundary Layer’s Vertical Entrainment of Momentum

Carlos Ferreira et al.Jun 1, 2024
Abstract In contemporary wind farm design, the primary focus has traditionally been on reducing wake interference to optimize energy capture from horizontal wind flows. However, with the scaling up of wind farms, their interaction with the Atmospheric Boundary Layer (ABL) evolves, making vertical entrainment the main mechanism for the exchange of momentum and energy. This study introduces a methodical approach to augment the efficiency of large-scale offshore wind farms by actively controlling this vertical entrainment of momentum within the ABL. The strategy involves the precise engineering of advection fluxes to alter wind flow dynamics, utilizing turbines as effective vortex generators, toward a process of ”regenerative wind farming.” This setup aims to create a vorticity and vertical flux system akin to those observed in highly unstable ABLs. Expanding upon previous studies that focused on single Vertical Axis Wind Turbines (VAWTs), our research explores the implementation of multi-rotor systems equipped with lift-generating wings. These systems are designed to exert forces perpendicular to the prevailing wind direction, thus creating trailing vortices and directing the flow orthogonally for improved vertical advection. This research is part of a comprehensive investigative framework that combines experiments and multifidelity simulations. The current study extends those findings to wind farm simulations, aiming to assess the impact of ABL control on a full wind farm scale. The first part of the work validates an established analytical wind farm performance model against real wind farm data for thirty-one wind farms in the North Sea and Baltic Sea. The results confirm the predicted trend of decreased performance with increased wind farm size and density. The model is used to calculate the performance of a wind farm for varying regimes of vertical entrainment due to the creation of large-scale circulatory systems. The results are compared against 3D vortex simulations of the full wind farm in ”regenerative wind farming” mode. Our results demonstrate a notable improvement in wind speeds at the turbine hub height and the potential to double the feasible density of wind farms without compromising efficiency compared to traditional setups. These findings suggest a promising pathway towards a more sustainable and profitable future in wind energy, achieved through the strategic manipulation of ABL momentum, regenerating the energy in the wind farm.
0
Paper
Citation4
0
Save
0

Experimental study of the impact of blade-tip mounted rotors on the X-Rotor vertical-axis wind turbine

David Bensason et al.Jun 1, 2024
Abstract The Horizon 2020 European Commission-funded project - X-ROTOR - proposes a radical rethink of the traditional vertical-axis wind turbine geometry. The X-Rotor vertical axis wind turbine relies on blade-tip mounted rotors, referred to as secondary rotors, for power generation and takeoff. This study examines the aerodynamic effects of secondary rotors on a scaled X-Rotor model’s loading in an open-jet wind tunnel. Particle image velocimetry measurements are taken at two cross-stream planes within the volume of rotation of a scaled turbine model at two phase-locked positions. The measurements are compared with cases without secondary rotors present to understand the local impact of the blade-tip mounted devices on the wake and vortex strengths. The results indicate an accelerated turbulent diffusion of the trailing tip-vortex of the X-Rotor, and the subsequent local in-plane velocity gradients induced by the trailing tip-vortex are diminished. These insights and experimental database contribute to the development and validation of numerical models of the X-Rotor with blade-tip mounted rotors.
0

Aeroelastic analysis of a very large wind turbine in various atmospheric stability conditions

Nirav Dangi et al.Jun 1, 2024
Abstract With the growing trend towards larger wind turbine rotor diameters, the impact of wind shear on rotor performance and loads becomes increasingly significant. Atmospheric stability strongly influences wind shear, leading to higher wind shear under stable atmospheric conditions. In this study, the aeroelastic performance of the IEA 22 MW rotor is assessed under inflow conditions generated by different methods. Inflow conditions were generated using turbulence models specified in the IEC Standards and also by Large Eddy simulations. Standalone OpenFAST simulations were conducted with the respective inflow conditions. It was found that at rated and above-rated wind speeds, the time-averaged wind turbine design loads were higher in stable atmospheric conditions, in comparison to the IEC NTM inflow conditions, while the opposite held for below-rated wind speeds. Specifically, the time-averaged root flapwise bending moment and rotor thrust were found to be higher by up to 7% in stable atmospheres. However, maximum design and fatigue loads were considerably higher in the IEC NTM case due to elevated turbulence levels. Compared to the IEC NTM case, the damage equivalent root flapwise bending moment was found to be 30% to 70% lower in the different scenarios.
Load More