RT
Ricky Thakrar
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
4,887
h-index:
24
/
i10-index:
28
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution

Christophe Dessimoz et al.Apr 25, 2017
The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies. Circulating tumour DNA profiling in early-stage non-small-cell lung cancer can be used to track single-nucleotide variants in plasma to predict lung cancer relapse and identify tumour subclones involved in the metastatic process. Circulating tumour DNA (ctDNA) has proven useful for detecting and monitoring cancer progression from plasma samples. The authors have applied a bespoke multiplex-PCR next-generation sequencing approach to profile ctDNA in the prospective TRACERx lung cancer clinical trial study. The assay tracks clonal and subclonal variants, in pre- and post-surgery samples. In pre-surgery samples ctDNA detection is associated with histological subtype and other pathological variables and correlates with tumour volume. Blinded longitudinal profiling suggests that ctDNA detection also associates with relapse, and provides insight into the evolutionary patterns of tumour cell subclones during progression. These results advance our understanding of how liquid biopsies can be applied clinically to improve monitoring of cancer.
0
Citation1,419
0
Save
0

Tobacco smoking and somatic mutations in human bronchial epithelium

Kenichi Yoshida et al.Jan 29, 2020
Tobacco smoking causes lung cancer1–3, a process that is driven by more than 60 carcinogens in cigarette smoke that directly damage and mutate DNA4,5. The profound effects of tobacco on the genome of lung cancer cells are well-documented6–10, but equivalent data for normal bronchial cells are lacking. Here we sequenced whole genomes of 632 colonies derived from single bronchial epithelial cells across 16 subjects. Tobacco smoking was the major influence on mutational burden, typically adding from 1,000 to 10,000 mutations per cell; massively increasing the variance both within and between subjects; and generating several distinct mutational signatures of substitutions and of insertions and deletions. A population of cells in individuals with a history of smoking had mutational burdens that were equivalent to those expected for people who had never smoked: these cells had less damage from tobacco-specific mutational processes, were fourfold more frequent in ex-smokers than current smokers and had considerably longer telomeres than their more-mutated counterparts. Driver mutations increased in frequency with age, affecting 4–14% of cells in middle-aged subjects who had never smoked. In current smokers, at least 25% of cells carried driver mutations and 0–6% of cells had two or even three drivers. Thus, tobacco smoking increases mutational burden, cell-to-cell heterogeneity and driver mutations, but quitting promotes replenishment of the bronchial epithelium from mitotically quiescent cells that have avoided tobacco mutagenesis. Whole-genome sequencing of normal bronchial epithelium from 16 individuals shows that tobacco smoking increases genomic heterogeneity, mutational burden and driver mutations, whereas stopping smoking promotes replenishment of the epithelium with near-normal cells.
0
Citation396
0
Save
0

Immune surveillance in clinical regression of pre-invasive squamous cell lung cancer

Adam Pennycuick et al.Nov 10, 2019
Before squamous cell lung cancer develops, pre-cancerous lesions can be found in the airways. From longitudinal monitoring, we know that only half of such lesions become cancer, whereas a third spontaneously regress. While recent studies have described the presence of an active immune response in high-grade lesions, the mechanisms underpinning clinical regression of pre-cancerous lesions remain unknown. Here, we show that host immune surveillance is strongly implicated in lesion regression. Using bronchoscopic biopsies from human subjects, we find that regressive carcinoma in-situ lesions harbour more infiltrating immune cells than those that progress to cancer. Moreover, molecular profiling of these lesions identifies potential immune escape mechanisms specifically in those that progress to cancer: antigen presentation is impaired by genomic and epigenetic changes, TGF-beta signalling is overactive, and the immunomodulator TNFSF9 is downregulated. Changes appear intrinsic to the CIS lesions as the adjacent stroma of progressive and regressive lesions are transcriptomically similar. This study identifies mechanisms by which pre-cancerous lesions evade immune detection during the earliest stages of carcinogenesis and forms a basis for new therapeutic strategies that treat or prevent early stage lung cancer.