SW
Shilei Wang
Author with expertise in Electrospun Nanofibers in Biomedical Applications
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(33% Open Access)
Cited by:
199
h-index:
17
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A dynamically cross-linked catechol-grafted chitosan/gelatin hydrogel dressing synergised with photothermal therapy and baicalin reduces wound infection and accelerates wound healing

Ying Wang et al.Jun 12, 2024
Superior multifunctional hydrogel dressings are of considerable interest in wound healing. In clinical practice, it is useful to investigate hydrogel dressings that offer multifunctional benefits to expedite the process of wound healing. In this study, Catechol-grafted Chitosan, Gelatin, and Fe3+ as substrates to construct a hydrogel network. The network was dynamically cross-linked to form Ccg@Fe hydrogel substrate. Fe3O4 nanoparticles and baicalin, which possess antimicrobial and anti-inflammatory properties, were loaded onto the substrate to form a photothermal antibacterial composite hydrogel dressing (Ccg@Fe/Bai@Fe3O4 NPs). The Ccg@Fe hydrogel was characterised using Fourier transform infrared spectroscopy (FTIR) and Ultraviolet-visible spectrophotometry (UV–Vis). The morphological, mechanical, and adhesion properties of the hydrogel were determined using scanning electron microscopy (SEM) and a universal testing machine. The hydrogel's swelling, hemostasis, and self-healing properties were also evaluated. Additionally, the study determined the release rate of hydrogel-loaded antimicrobial and anti-inflammatory Baicalin (Ccg@Fe/Bai) and evaluated the photothermal antimicrobial properties of hydrogel-loaded Fe3O4 nanoparticles (Ccg@Fe/Bai@Fe3O4 NPs) through synergistic photothermal therapy (PTT). Histological staining of mice skin wound tissues using Masson and H&E revealed that the Ccg@Fe/Bai@Fe3O4 NPs hydrogel dressing demonstrated potential healing ability with the aid of PTT. The study suggests that this multifunctional hydrogel dressing has great potential for wound healing.
0

Biochar accelerates methane production efficiency from Baijiu wastewater: Some viewpoints considering direct interspecies electron transfer

Wenlong He et al.Aug 11, 2024
The low pH of Maotai-flavor Baijiu wastewater (MFBW) adversely affects its anaerobic digestion (AD) performance, resulting in low AD efficiency. Here, coconut shell was used to produce biochar. The characteristics of biochar were regulated through acid, alkali, and magnetic modification, respectively. Biochar and modified biochars were applied to assist the AD of MFBW. The results showed that biochar could significantly increase methane yield by 220.8 %–241.7 % with the corresponding soluble chemical oxygen demand (sCOD) degradation increasing by 52.3 %–57.5 % (p < 0.05). Joint modification could significantly enhance the electron donating capacity from 0.0042 to 0.0095 mmol e−1/g (p < 0.05). The combined modification with magnetic alkali had the best stimulating effect on the AD process, which might be related to the conductive particles (Fe3O4) formed during magnetization processes. The modified biochar featured a high degree of surface roughness, a relatively large aperture, and strong electron donating ability, all of which were beneficial to the colonization and microbial growth. Supplementation with biochar resulted in the enrichment of Proteobacteria, Firmicutes, and Actinobacteria, especially for Syntrophomonas (rising from 0.013 % to 6.74 %–10.93 % of relative abundance). These microorganisms are related to the hydrolysis, acidification, and extracellular electron transfer. The enrichment of electroactive microorganism is a prerequisite for improving the direct interspecies electron transfer pathway. This study provides theoretical support for efficient MFBW treatment.
0

Construction of synthetic microbiota for reproducible flavor metabolism in Chinese light aroma type liquor produced by solid-state fermentation

Shilei Wang et al.Jan 3, 2019
Natural microbiota plays an essential role in flavor compounds producing for traditional food fermentation. Whereas, the fluctuation of natural microbiota results in the inconstancy of food quality. Thus, it is critical to reveal the core microbiota for flavor compounds producing and construct a synthetic core microbiota for constant food fermentation. Here, we revealed the core microbiota based on their flavor-producing and co-occurrence performance, using Chinese light aroma type liquor as a model system. Five genera were identified to be the core microbiota, including Lactobacillus, Saccharomyces, Pichia, Geotrichum, and Candida. The synthetic core microbiota of these five genera presented a reproducible dynamic profile with that in the natural microbiota. Monte Carlo test showed that the interpretation of five environmental factors (lactic acid, ethanol and acetic acid contents, moisture and pH) on the synthetic microbiota distribution were highly significant (P < 0.01), which was similar with that in the natural fermentation system. In addition, 77.27% of the flavor compounds produced by the synthetic core microbiota showed a similar dynamic profile (ρ > 0) with that in the natural liquor fermentation process, and the flavor profile presented a similar composition. It indicated that the synthetic core microbiota is efficient for reproducible flavor metabolism. This work established a method for identifying core microbiota and constructing a synthetic microbiota for reproducible flavor compounds. It is of great significance for the tractable and constant production of various fermented foods.
0

Producing D-Ribose from D-Xylose by Demonstrating a Pentose Izumoring Route

Jun Zhang et al.Nov 23, 2024
D-Ribose plays fundamental roles in all living organisms and has been applied in food, cosmetics, health care, and pharmaceutical sectors. At present, D-ribose is predominantly produced by microbial fermentation based on the pentose phosphate pathway (PPP). However, this method suffers from a long synthetic pathway, severe growth defect of the host cell, and carbon catabolite repression (CCR). According to the Izumoring strategy, D-ribose can be produced from D-xylose through only three steps. Being not involved in the growth defect or CCR, this shortcut route is promising to produce D-ribose efficiently. However, this route has never been demonstrated in engineering practice, which hinders its application. In this study, we stepwise demonstrated this route and screened out higher active enzymes for each step. The first D-ribose production from D-xylose through the Izumoring route was achieved. By stepwise enzyme dosage tuning and process optimization, 6.87 g/L D-ribose was produced from 40 g/L D-xylose. Feeding D-xylose further improved the D-ribose titer to 9.55 g/L. Finally, we tested the coproduction of D-ribose and D-allose from corn stalk hydrolysate using the route engineered herein. In conclusion, this study demonstrated a pentose Izumoring route, complemented the engineering practices of the Izumoring strategy, paved the way to produce D-ribose from D-xylose, and provided an approach to comprehensively utilize the lignocellulosic sugars.