PF
P. Fernåndez
Author with expertise in High-Energy Astrophysics and Particle Acceleration Studies
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(100% Open Access)
Cited by:
3,057
h-index:
38
/
i10-index:
75
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations

K. Abe et al.Apr 15, 2020
The charge-conjugation and parity-reversal (CP) symmetry of fundamental particles is a symmetry between matter and antimatter. Violation of this CP symmetry was first observed in 19641, and CP violation in the weak interactions of quarks was soon established2. Sakharov proposed3 that CP violation is necessary to explain the observed imbalance of matter and antimatter abundance in the Universe. However, CP violation in quarks is too small to support this explanation. So far, CP violation has not been observed in non-quark elementary particle systems. It has been shown that CP violation in leptons could generate the matter–antimatter disparity through a process called leptogenesis4. Leptonic mixing, which appears in the standard model’s charged current interactions5,6, provides a potential source of CP violation through a complex phase δCP, which is required by some theoretical models of leptogenesis7–9. This CP violation can be measured in muon neutrino to electron neutrino oscillations and the corresponding antineutrino oscillations, which are experimentally accessible using accelerator-produced beams as established by the Tokai-to-Kamioka (T2K) and NOvA experiments10,11. Until now, the value of δCP has not been substantially constrained by neutrino oscillation experiments. Here we report a measurement using long-baseline neutrino and antineutrino oscillations observed by the T2K experiment that shows a large increase in the neutrino oscillation probability, excluding values of δCP that result in a large increase in the observed antineutrino oscillation probability at three standard deviations (3σ). The 3σ confidence interval for δCP, which is cyclic and repeats every 2π, is [−3.41, −0.03] for the so-called normal mass ordering and [−2.54, −0.32] for the inverted mass ordering. Our results indicate CP violation in leptons and our method enables sensitive searches for matter–antimatter asymmetry in neutrino oscillations using accelerator-produced neutrino beams. Future measurements with larger datasets will test whether leptonic CP violation is larger than the CP violation in quarks. The T2K experiment constrains CP symmetry in neutrino oscillations, excluding 46% of possible values of the CP violating parameter at a significance of three standard deviations; this is an important milestone to test CP symmetry conservation in leptons and whether the Universe’s matter–antimatter imbalance originates from leptons.
0

Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande

K. Abe et al.May 19, 2015
Hyper-Kamiokande will be a next-generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of |$CP$| asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this paper, the physics potential of a long-baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis uses the framework and systematic uncertainties derived from the ongoing T2K experiment. With a total exposure of 7.5 MW |$\times 10^7$|s integrated proton beam power (corresponding to |$1.56 \times 10^{22}$| protons on target with a 30 GeV proton beam) to a |$2.5^\circ$| off-axis neutrino beam, it is expected that the leptonic |$CP$| phase |$\delta _{CP}$| can be determined to better than 19 degrees for all possible values of |$\delta _{CP}$|⁠, and |$CP$| violation can be established with a statistical significance of more than |$3\,\sigma$| (⁠|$5\,\sigma$|⁠) for |$76{\%}$| (⁠|$58{\%}$|⁠) of the |${\delta _{CP}}$| parameter space. Using both |$\nu _e$| appearance and |$\nu _\mu$| disappearance data, the expected 1|$\sigma$| uncertainty of |$\sin ^2\theta _{23}$| is 0.015(0.006) for |$\sin ^2\theta _{23}=0.5(0.45)$|⁠.
0

Second gadolinium loading to Super-Kamiokande

K. Abe et al.Jun 4, 2024
The first loading of gadolinium (Gd) into Super-Kamiokande in 2020 was successful, and the neutron capture efficiency on Gd reached 50%. To further increase the Gd neutron capture efficiency to 75%, 26.1 tons of Gd2(SO4)3⋅8H2O was additionally loaded into Super-Kamiokande (SK) from May 31 to July 4, 2022. As the amount of loaded Gd2(SO4)3⋅8H2O was doubled compared to the first loading, the capacity of the powder dissolving system was doubled. We also developed new batches of gadolinium sulfate with even further reduced radioactive impurities. In addition, a more efficient screening method was devised and implemented to evaluate these new batches of Gd2(SO4)3⋅8H2O. Following the second loading, the Gd concentration in SK was measured to be 333.5±2.5 ppm via an Atomic Absorption Spectrometer (AAS). From the mean neutron capture time constant of neutrons from an Am/Be calibration source, the Gd concentration was independently measured to be 332.7 ± 6.8(sys.) ± 1.1(stat.) ppm, consistent with the AAS result. Furthermore, during the loading the Gd concentration was monitored continually using the capture time constant of each spallation neutron produced by cosmic-ray muons, and the final neutron capture efficiency was shown to become 1.5 times higher than that of the first loaded phase, as expected.