Automatic mucosal lesion segmentation is a critical component in computer-aided clinical support systems for endoscopic image analysis. Image segmentation networks currently rely mainly on convolutional neural networks (CNNs) and Transformers, which have demonstrated strong performance in various applications. However, they cannot cope with blurred lesion boundaries and lesions of different scales in gastrointestinal endoscopy images. To address these challenges, we propose a new Transformer-based network, named GLGFormer, for the task of mucosal lesion segmentation. Specifically, we design the global guidance module to guide single-scale features patch-wise, enabling them to incorporate global information from the global map without information loss. Furthermore, a partial decoder is employed to fuse these enhanced single-scale features, achieving single-scale to multi-scale enhancement. Additionally, the local guidance module is designed to refocus attention on the neighboring patch, thus enhancing local features and refining lesion boundary segmentation. We conduct experiments on a private atrophic gastritis segmentation dataset and four public gastrointestinal polyp segmentation datasets. Compared to the current lesion segmentation networks, our proposed GLGFormer demonstrates outstanding learning and generalization capabilities. On the public dataset ClinicDB, GLGFormer achieved a mean intersection over union (mIoU) of 91.0% and a mean dice coefficient (mDice) of 95.0%. On the private dataset Gastritis-Seg, GLGFormer achieved an mIoU of 90.6% and an mDice of 94.6%.