Two-dimensional materials have been an ideal material platform for constructing flexible ultrathin-film supercapacitors, offering great advantages of flexibility, ultra-thinness and even transparency. Exploring new two-dimensional pseudocapacitive materials with high electrochemical activity is needed to achieve flexible ultrathin-film supercapacitors with higher energy densities. Here we report an inorganic graphene analogue, α1-vanadyl phosphate ultrathin nanosheets with less than six atomic layers, as a promising material to construct a flexible ultrathin-film pseudocapacitor in all-solid-state. The material exhibits a high potential plateau of ~ 1.0 V in aqueous solutions, approaching the electrochemical potential window of water (1.23 V). The as-established flexible supercapacitor achieves a high redox potential (1.0 V) and a high areal capacitance of 8,360.5 μF cm−2, leading to a high energy density of 1.7 mWh cm−2 and a power density of 5.2 mW cm−2. Graphene-like materials with pseudocapacitive characteristics are desirable for flexible solid-state pseudocapacitors. Here Wu et al. report such a graphene analogue, vanadyl phosphate ultrathin nanosheets, which exhibits excellent pseudocapacitive properties, leading to a high energy density.