SP
Se Park
Author with expertise in Biosynthesis and Engineering of Terpenoids
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(45% Open Access)
Cited by:
1,079
h-index:
53
/
i10-index:
232
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Electrochemical non-enzymatic glucose sensors

Se Park et al.Jul 13, 2005
The electrochemical determination of glucose concentration without using enzyme is one of the dreams that many researchers have been trying to make come true. As new materials have been reported and more knowledge on detailed mechanism of glucose oxidation has been unveiled, the non-enzymatic glucose sensor keeps coming closer to practical applications. Recent reports strongly imply that this progress will be accelerated in 'nanoera'. This article reviews the history of unraveling the mechanism of direct electrochemical oxidation of glucose and making attempts to develop successful electrochemical glucose sensors. The electrochemical oxidation of glucose molecules involves complex processes of adsorption, electron transfer, and subsequent chemical rearrangement, which are combined with the surface reactions on the metal surfaces. The information about the direct oxidation of glucose on solid-state surfaces as well as new electrode materials will lead us to possible breakthroughs in designing the enzymeless glucose sensing devices that realize innovative and powerful detection. An example of those is to introduce nanoporous platinum as an electrode, on which glucose is oxidized electrochemically with remarkable sensitivity and selectivity. Better model of such glucose sensors is sought by summarizing and revisiting the previous reports on the electrochemistry of glucose itself and new electrode materials.
13

Chromosome-level genome assembly ofEuphorbia peplus, a model system for plant latex, reveals that relative lack of Ty3 transposons contributed to its small genome size

Arielle Johnson et al.Oct 17, 2022
Abstract Euphorbia peplus (petty spurge) is a small, fast-growing plant that is native to Eurasia and has become a naturalized weed in North America and Australia. E. peplus is not only medicinally valuable, serving as a source for the skin cancer drug ingenol mebutate, but also has great potential as a model for latex production owing to its small size, ease of manipulation in the laboratory, and rapid reproductive cycle. To help establish E. peplus as a new model, we generated a 267.2 Mb HiC-anchored PacBio HiFi nuclear genome assembly with an embryophyta BUSCO score of 98.5%, a genome annotation based on RNA-seq data from six tissues, and publicly accessible tools including a genome browser and an interactive organ-specific expression atlas. Chromosome number is highly variable across Euphorbia species. Using a comparative analysis of our newly sequenced E. peplus genome with other Euphorbiaceae genomes, we show that variation in Euphorbia chromosome number is likely due to fragmentation and rearrangement rather than aneuploidy. Moreover, we found that the E. peplus genome is relatively compact compared to related members of the genus in part due to restricted expansion of the Ty3 transposon family. Finally, we identify a large gene cluster that contains many previously identified enzymes in the putative ingenol mebutate biosynthesis pathway, along with additional gene candidates for this biosynthetic pathway. The genomic resources we have created for E. peplus will help advance research on latex production and ingenol mebutate biosynthesis in the commercially important Euphorbiaceae family. Significance statement Euphorbia is one of the five largest genera in the plant kingdom. Despite an impressive phenotypic and metabolic diversity in this genus, only one Euphorbia genome has been sequenced so far, restricting insights into Euphorbia biology. Euphorbia peplus has excellent potential as a model species due to its latex production, fast growth rate and production of the anticancer drug ingenol mebutate. Here, we present a chromosome-level E. peplus genome assembly and publicly accessible resources to support molecular research for this unique species and the broader genus. We also provide an explanation of one reason the genome is so small, and identify more candidate genes for the anticancer drug and related compounds.
8

Computational metabolomics illuminates the lineage-specific diversification of resin glycoside acylsugars in the morning glory (Convolvulaceae) family

Lars Kruse et al.Aug 20, 2021
Abstract Acylsugars are a class of plant defense compounds produced across many distantly related families. Members of the horticulturally important morning glory (Convolvulaceae) family produce a diverse sub-class of acylsugars called resin glycosides (RGs), which comprise oligosaccharide cores, hydroxyacyl chain(s), and decorating aliphatic and aromatic acyl chains. While many RG structures are characterized, the extent of structural diversity of this class in different genera and species is not known. In this study, we asked whether there has been lineage-specific diversification of RG structures in different Convolvulaceae species that may suggest diversification of the underlying biosynthetic pathways. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was performed from root and leaf extracts of 26 species sampled in a phylogeny-guided manner. LC-MS/MS revealed thousands of peaks with signature RG fragmentation patterns with one species producing over 300 signals, mirroring the diversity in Solanaceae-type acylsugars. A novel RG from Dichondra argentea was characterized using Nuclear Magnetic Resonance spectroscopy, supporting previous observations of RGs with open hydroxyacyl chains instead of closed macrolactone ring structures. Substantial lineage-specific differentiation in utilization of sugars, hydroxyacyl chains, and decorating acyl chains was discovered, especially among Ipomoea and Convolvulus – the two largest genera in Convolvulaceae. Adopting a computational, knowledge-based strategy, we further developed a high-recall workflow that successfully explained ~72% of the MS/MS fragments, predicted the structural components of 11/13 previously characterized RGs, and partially annotated ~45% of the RGs. Overall, this study improves our understanding of phytochemical diversity and lays a foundation for characterizing the evolutionary mechanisms underlying RG diversification.
0

Robust self-supervised learning strategy to tackle the inherent sparsity in single-cell RNA-seq data

Se Park et al.Sep 23, 2024
Abstract Single-cell RNA sequencing (scRNA-seq) is a powerful tool for elucidating cellular heterogeneity and tissue function in various biological contexts. However, the sparsity in scRNA-seq data limits the accuracy of cell type annotation and transcriptomic analysis due to information loss. To address this limitation, we present scRobust, a robust self-supervised learning strategy to tackle the inherent sparsity of scRNA-seq data. Built upon the Transformer architecture, scRobust employs a novel self-supervised learning strategy comprising contrastive learning and gene expression prediction tasks. We demonstrated the effectiveness of scRobust using nine benchmarks, additional dropout scenarios, and combined datasets. scRobust outperformed recent methods in cell-type annotation tasks and generated cell embeddings that capture multi-faceted clustering information (e.g. cell types and HbA1c levels). In addition, cell embeddings of scRobust were useful for detecting specific marker genes related to drug tolerance stages. Furthermore, when we applied scRobust to scATAC-seq data, high-quality cell embedding vectors were generated. These results demonstrate the representational power of scRobust.
0

Limosilactobacillus reuteri fermented brown rice alleviates anxiety improves cognition and modulates gut microbiota in stressed mice

Akanksha Tyagi et al.Jan 11, 2025
Chronic stress disrupts gut microbiota homeostasis, contributing to anxiety and depression. This study explored the effects of Limosilactobacillus reuteri fermented brown rice (FBR) on anxiety using an ICR mouse chronic mild stress (CMS) model. Anxiety was assessed through body weight, corticosterone levels, neurotransmitter profiles, and behavioral tests. A four-week FBR regimen reduced corticosterone, restored neurotransmitters like gamma-aminobutyric acid (GABA) and serotonin, and improved anxiety-related behaviors. Metagenomic (16S rRNA) and metabolomic analyses revealed enhanced amino acid metabolism, energy metabolism, and short-chain fatty acid (SCFA) production in FBR-treated mice. FBR-enriched beneficial gut bacteria, aligning the microbiota profile with that of non-stressed mice. FBR also modulated GABA receptor-related gene expression, promoting relaxation. Network pharmacology identified quercetin, GABA, glutamic acid, phenylalanine, and ferulic acid as bioactive compounds with neuroprotective potential. These findings highlight FBR's potential as a gut-brain axis-targeted therapeutic for anxiety and stress-related disorders.
Load More