BL
Bin Liang
Author with expertise in Multilevel Converters in Power Electronics
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
187
h-index:
22
/
i10-index:
46
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Continuous Multi-Target Approaching Control of Hyper-Redundant Manipulators Based on Reinforcement Learning

Han Xu et al.Dec 3, 2024
Hyper-redundant manipulators based on bionic structures offer superior dexterity due to their large number of degrees of freedom (DOFs) and slim bodies. However, controlling these manipulators is challenging because of infinite inverse kinematic solutions. In this paper, we present a novel reinforcement learning-based control method for hyper-redundant manipulators, integrating path and configuration planning. First, we introduced a deep reinforcement learning-based control method for a multi-target approach, eliminating the need for complicated reward engineering. Then, we optimized the network structure and joint space target points sampling to implement precise control. Furthermore, we designed a variable-reset cycle technique for a continuous multi-target approach without resetting the manipulator, enabling it to complete end-effector trajectory tracking tasks. Finally, we verified the proposed control method in a dynamic simulation environment. The results demonstrate the effectiveness of our approach, achieving a success rate of 98.32% with a 134% improvement using the variable-reset cycle technique.