BM
Bo Meng
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(100% Open Access)
Cited by:
3,259
h-index:
18
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion

Petra Mlčochová et al.Sep 6, 2021
Abstract The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha) 1 . In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era.
0

Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity

Bo Meng et al.Feb 1, 2022
Abstract The SARS-CoV-2 Omicron BA.1 variant emerged in 2021 1 and has multiple mutations in its spike protein 2 . Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron’s evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2 , and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways 3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis.
0

Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies

Dami Collier et al.Mar 11, 2021
Transmission of SARS-CoV-2 is uncontrolled in many parts of the world; control is compounded in some areas by the higher transmission potential of the B.1.1.7 variant1, which has now been reported in 94 countries. It is unclear whether the response of the virus to vaccines against SARS-CoV-2 on the basis of the prototypic strain will be affected by the mutations found in B.1.1.7. Here we assess the immune responses of individuals after vaccination with the mRNA-based vaccine BNT162b22. We measured neutralizing antibody responses after the first and second immunizations using pseudoviruses that expressed the wild-type spike protein or a mutated spike protein that contained the eight amino acid changes found in the B.1.1.7 variant. The sera from individuals who received the vaccine exhibited a broad range of neutralizing titres against the wild-type pseudoviruses that were modestly reduced against the B.1.1.7 variant. This reduction was also evident in sera from some patients who had recovered from COVID-19. Decreased neutralization of the B.1.1.7 variant was also observed for monoclonal antibodies that target the N-terminal domain (9 out of 10) and the receptor-binding motif (5 out of 31), but not for monoclonal antibodies that recognize the receptor-binding domain that bind outside the receptor-binding motif. Introduction of the mutation that encodes the E484K substitution in the B.1.1.7 background to reflect a newly emerged variant of concern (VOC 202102/02) led to a more-substantial loss of neutralizing activity by vaccine-elicited antibodies and monoclonal antibodies (19 out of 31) compared with the loss of neutralizing activity conferred by the mutations in B.1.1.7 alone. The emergence of the E484K substitution in a B.1.1.7 background represents a threat to the efficacy of the BNT162b2 vaccine. Sera from vaccinated individuals and some monoclonal antibodies show a modest reduction in neutralizing activity against the B.1.1.7 variant of SARS-CoV-2; but the E484K substitution leads to a considerable loss of neutralizing activity.
0
Citation678
0
Save
2k

SARS-CoV-2 Omicron spike mediated immune escape and tropism shift

Bo Meng et al.Dec 21, 2021
Abstract The SARS-CoV-2 Omicron BA.1 variant emerged in late 2021 and is characterised by multiple spike mutations across all spike domains. Here we show that Omicron BA.1 has higher affinity for ACE2 compared to Delta, and confers very significant evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralising antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralisation. Importantly, antiviral drugs remdesevir and molnupiravir retain efficacy against Omicron BA.1. We found that in human nasal epithelial 3D cultures replication was similar for both Omicron and Delta. However, in lower airway organoids, Calu-3 lung cells and gut adenocarcinoma cell lines live Omicron virus demonstrated significantly lower replication in comparison to Delta. We noted that despite presence of mutations predicted to favour spike S1/S2 cleavage, the spike protein is less efficiently cleaved in live Omicron virions compared to Delta virions. We mapped the replication differences between the variants to entry efficiency using spike pseudotyped virus (PV) entry assays. The defect for Omicron PV in specific cell types correlated with higher cellular RNA expression of TMPRSS2, and accordingly knock down of TMPRSS2 impacted Delta entry to a greater extent as compared to Omicron. Furthermore, drug inhibitors targeting specific entry pathways demonstrated that the Omicron spike inefficiently utilises the cellular protease TMPRSS2 that mediates cell entry via plasma membrane fusion. Instead, we demonstrate that Omicron spike has greater dependency on cell entry via the endocytic pathway requiring the activity of endosomal cathepsins to cleave spike. Consistent with suboptimal S1/S2 cleavage and inability to utilise TMPRSS2, syncytium formation by the Omicron spike was dramatically impaired compared to the Delta spike. Overall, Omicron appears to have gained significant evasion from neutralising antibodies whilst maintaining sensitivity to antiviral drugs targeting the polymerase. Omicron has shifted cellular tropism away from TMPRSS2 expressing cells that are enriched in cells found in the lower respiratory and GI tracts, with implications for altered pathogenesis.
2k
Citation52
0
Save
11

SARS-CoV-2 Spike N-Terminal Domain modulates TMPRSS2-dependent viral entry and fusogenicity

Bo Meng et al.May 10, 2022
Abstract Over 20 mutations have been identified in the N-Terminal Domain (NTD) of SARS-CoV-2 spike and yet few of them are fully characterised. Here we first examined the contribution of the NTD to infection and cell-cell fusion by constructing different VOC-based chimeric spikes bearing B.1617 lineage (Delta and Kappa variants) NTDs and generating spike pseudotyped lentivirus (PV). We found the Delta NTD on a Kappa or WT background increased spike S1/S2 cleavage efficiency and virus entry, specifically in Calu-3 lung cells and airway organoids, through use of TMPRSS2. We have previously shown Delta spike confers rapid cell-cell fusion kinetics; here we show that increased fusogenicity can be conferred to WT and Kappa variant spikes by transfer of the Delta NTD. Moving to contemporary variants, we found that BA.2 had higher entry efficiency in a range of cell types as compared to BA.1. BA.2 showed higher fusogenic activity than BA.1, but the BA.2 NTD could not confer higher fusion to BA.1 spike. There was low efficiency of TMPRSS2 usage by both BA.1 and BA.2, and chimeras of Omicron BA.1 and BA.2 spikes with a Delta NTD did not result in more efficient use of TMRPSS2 or cell-cell fusogenicity. We conclude that the NTD allosterically modulates S1/S2 cleavage and spike-mediated functions such as entry and cell-cell fusion in a spike context dependent manner, and allosteric interactions may be lost when combining regions from more distantly related spike proteins. These data may explain the lack of successful SARS-CoV-2 inter-variant recombinants bearing breakpoints within spike.
11
Citation2
0
Save
0

Spike N354 glycosylation augments SARS-CoV-2 fitness for human adaptation through multiple mechanisms

Pan Liu et al.Jan 30, 2024
SUMMARY Selective pressures have given rise to a number of SARS-CoV-2 variants during the prolonged course of the COVID-19 pandemic. Recently evolved variants differ from ancestors in additional glycosylation within the spike protein receptor-binding domain (RBD). Details of how the acquisition of glycosylation impacts viral fitness and human adaptation are not clearly understood. Here, we dissected the role of N354-linked glycosylation, acquired by BA.2.86 sub-lineages, as a RBD conformational control element in attenuating viral infectivity. The reduced infectivity could be recovered in the presence of heparin sulfate, which targets the “N354 pocket” to ease restrictions of conformational transition resulting in a “RBD-up” state, thereby conferring an adjustable infectivity. Furthermore, N354 glycosylation improved spike cleavage and cell-cell fusion, and in particular escaped one subset of ADCC antibodies. Together with reduced immunogenicity in hybrid immunity background, these indicate a single spike amino acid glycosylation event provides selective advantage in humans through multiple mechanisms. HIGHLIGHTS N354 glycosylation acts as a conformational control element to modulate infectivity Reduced infectivity could be recovered by altered binding mode of heparin sulfate N354 glycosylation improved fusogenicity and conferred escape from ADCC antibodies N354 glycosylation reduced immunogenicity and conferred immune evasion
0
Citation2
0
Save
756

Recurrent emergence and transmission of a SARS-CoV-2 spike deletion H69/V70

Steven Kemp et al.Dec 14, 2020
Abstract SARS-CoV-2 amino acid replacements in the receptor binding domain (RBD) occur relatively frequently and some have a consequence for immune recognition. Here we report recurrent emergence and significant onward transmission of a six-nucleotide out of frame deletion in the S gene, which results in loss of two amino acids: H69 and V70. We report that in human infections ΔH69/V70 often co-occurs with the receptor binding motif amino acid replacements N501Y, N439K and Y453F, and in the latter two cases has followed the RBD mutation. One of the ΔH69/V70+ N501Y lineages, now known as B.1.1.7, has undergone rapid expansion and includes eight S gene mutations: RBD (N501Y and A570D), S1 (ΔH69/V70 and Δ144) and S2 (P681H, T716I, S982A and D1118H). In vitro , we show that ΔH69/V70 does not reduce serum neutralisation across multiple convalescent sera. However, ΔH69/V70 increases infectivity and is associated with increased incorporation of cleaved spike into virions. ΔH69/V70 is able to compensate for small infectivity defects induced by RBD mutations N501Y, N439K and Y453F. In addition, replacement of H69 and V70 residues in the B.1.1.7 spike reduces its infectivity and spike mediated cell-cell fusion. Based on our data ΔH69/V70 likely acts as a permissive mutation that allows acquisition of otherwise deleterious immune escape mutations. Enhanced surveillance for the ΔH69/V70 deletion with and without RBD mutations should be considered as a global priority not only as a marker for the B.1.1.7 variant, but potentially also for other emerging variants of concern. Vaccines designed to target the deleted spike protein could mitigate against its emergence as increased selective forces from immunity and vaccines increase globally. Highlights ΔH69/V70 is present in at least 28 SARS-CoV-2 lineages ΔH69/V70 does not confer escape from convalescent sera ΔH69/V70 increases spike infectivity and compensates for RBD mutations ΔH69/V70 is associated with greater spike cleavage B.1.1.7 requires ΔH69/V70 for optimal spike cleavage and infectivity