AG
A. Giachero
Author with expertise in Particle Physics and High-Energy Collider Experiments
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
1,003
h-index:
32
/
i10-index:
85
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

First Results from CUORE: A Search for Lepton Number Violation via 0νββ Decay of Te130

C. Alduino et al.Mar 26, 2018
The CUORE experiment, a ton-scale cryogenic bolometer array, recently began operation at the Laboratori Nazionali del Gran Sasso in Italy. The array represents a significant advancement in this technology, and in this work we apply it for the first time to a high-sensitivity search for a lepton-number--violating process: $^{130}$Te neutrinoless double-beta decay. Examining a total TeO$_2$ exposure of 86.3 kg$\cdot$yr, characterized by an effective energy resolution of (7.7 $\pm$ 0.5) keV FWHM and a background in the region of interest of (0.014 $\pm$ 0.002) counts/(keV$\cdot$kg$\cdot$yr), we find no evidence for neutrinoless double-beta decay. The median statistical sensitivity of this search is $7.0\times10^{24}$ yr. Including systematic uncertainties, we place a lower limit on the decay half-life of $T^{0\nu}_{1/2}$($^{130}$Te) > $1.3\times 10^{25}$ yr (90% C.L.). Combining this result with those of two earlier experiments, Cuoricino and CUORE-0, we find $T^{0\nu}_{1/2}$($^{130}$Te) > $1.5\times 10^{25}$ yr (90% C.L.), which is the most stringent limit to date on this decay. Interpreting this result as a limit on the effective Majorana neutrino mass, we find $m_{\beta\beta}<(110 - 520)$ meV, where the range reflects the nuclear matrix element estimates employed.
0

Measurable Improvement in Multi-Qubit Readout Using a Kinetic Inductance Traveling Wave Parametric Amplifier

Manuel Castellanos-Beltran et al.Jan 1, 2025
Increasing the size and complexity of quantum information systems requires highly-multiplexed readout architectures, as well as amplifier chains operating near the quantum limit (QL) of added noise. While documented prior efforts in KITWPA integration in quantum systems are scarce, in this work we demonstrate integration of a KI-TWPA with a multiplexed-qubit device. To quantify the system noise improvement we perform an ac Stark shift calibration to precisely determine noise power levels on-chip (at each cavity's reference plane) and the total system gain. We then characterize the qubit state measurement fidelity and the corresponding signal-to-noise ratio (SNR). To conduct the most faithful measurement of the benefits offered by the KI-TWPA we perform these measurements for readout chains where the high electron mobility transistor (HEMT) amplifier is the first-stage amplifier (FSA) - with none of the external hardware required to operate the KI-TWPA - and with the KI-TWPA as the FSA. While some readout cavities fall outside the KI-TWPA bandwidth, for those inside the bandwidth we demonstrate a maximum improvement in the state measurement SNR by a factor of 1.45, and increase the fidelity from 96.2% to 97.8%. These measurements demonstrate a system noise below 5 quanta referenced on-chip and we bound the KI-TWPA excess noise to be below 4 quanta for the six cavities inside its bandwidth. These results show a promising path forward for realizing quantum-limited readout chains in large qubit systems using a single parametric amplifier.
0

Spectroscopic Measurements and Models of Energy Deposition in the Substrate of Quantum Circuits by Natural Ionizing Radiation

Joseph Fowler et al.Nov 12, 2024
Naturally occurring background radiation is a potential source of correlated decoherence events in superconducting qubits that will challenge error-correction schemes. In order to characterize the radiation environment in an unshielded laboratory representative of superconducting qubits’ environments, we performed broadband, spectroscopic measurements of background radiation events inside a millikelvin refrigerator. The spectrometer was designed to mimic the size and composition of a quantum circuit. Specifically, we measured the background radiation spectra in silicon substrates of two thicknesses, 500 and 1500 µm, and one area, 25 mm2. The observed spectra span energies from a few kilo-electron-volts up to nearly 10 MeV, are nearly featureless, and decrease in intensity by a factor of 40 000 between 100 keV and 3 MeV for the 500-µm substrate. We integrate the spectra to obtain the average event rates and deposited power levels. These quantities correspond to a rate of 0.023 events per second and a power of 4.9 keV s1, when counting events that deposit at least 40 keV for the 500-µm-thick substrate. We find that the cryogenic measurements are in good agreement with predictions based on simple measurements of the terrestrial gamma-ray flux outside the refrigerator, published models of cosmic-ray fluxes, a crude model of the cryostat, and radiation-transport simulations. This model requires no free parameters to predict the background radiation spectra in the silicon substrates. The agreement between measurements and predictions demonstrates that the model we present can be used to assess the relative contributions of terrestrial and cosmic-ray sources to background radiation interactions in silicon substrates of varying thickness. These spectroscopic measurements are performed with a novel combination of superconducting microresonators located on micromachined silicon islands that define the interaction volume with background radiation. The resonators transduce deposited energy to a readily detectable electrical signal. Microresonator readout closely resembles dispersive superconducting qubit readout, so similar devices—with or without micromachined islands—are suitable for integration with superconducting quantum circuits as detectors for background radiation events. For our specific laboratory conditions, we find that gamma-ray emissions from radioisotopes are responsible for the majority of events that deposit E<1MeV. We present results demonstrating that the background radiation spectrum contains relevant contributions from cosmic-ray particles other than muons, particularly a tail of multi-mega-electron-volt events due to protons and neutrons. These observations suggest several paths to reducing the impact of background radiation on quantum circuits, supported by an empirically validated model for generating reliable predictions of radiation interactions with silicon substrates. Published by the American Physical Society 2024
0

Kinetic inductance current sensor for visible to near-infrared wavelength transition-edge sensor readout

Paul Szypryt et al.Nov 6, 2024
Abstract Single-photon detectors based on the superconducting transition-edge sensor are used in a number of visible to near-infrared applications, particularly for photon-number-resolving measurements in quantum information science. To be practical for large-scale spectroscopic imaging or photonic quantum computing applications, the size of visible to near-infrared transition-edge sensor arrays and their associated readouts must be increased from a few pixels to many thousands. In this manuscript, we introduce the kinetic inductance current sensor, a scalable readout technology that exploits the nonlinear kinetic inductance in a superconducting resonator to make sensitive current measurements. Kinetic inductance current sensors can replace superconducting quantum interference devices for many applications because of their ability to measure fast, high slew-rate signals, their compatibility with standard microwave frequency-division multiplexing techniques, and their relatively simple fabrication. Here, we demonstrate the readout of a visible to near-infrared transition-edge sensor using a kinetic inductance current sensor with 3.7 MHz of bandwidth. We measure a readout noise of $$1.4\,{{{\rm{pA}}}}/\sqrt{{{{\rm{Hz}}}}}$$ 1.4  pA /  Hz  , considerably below the detector noise at frequencies of interest, and an energy resolution of (0.137 ± 0.001) eV at 0.8 eV, comparable to resolutions observed with non-multiplexed superconducting quantum interference device readouts.