HD
Haifeng Dong
Author with expertise in Nanotechnology and Imaging for Cancer Therapy and Diagnosis
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(23% Open Access)
Cited by:
3,124
h-index:
60
/
i10-index:
137
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Biodegradable Biomimic Copper/Manganese Silicate Nanospheres for Chemodynamic/Photodynamic Synergistic Therapy with Simultaneous Glutathione Depletion and Hypoxia Relief

Conghui Liu et al.Mar 22, 2019
The integration of reactive oxygen species (ROS)-involved photodynamic therapy (PDT) and chemodynamic therapy (CDT) holds great promise for enhanced anticancer effects. Herein, we report biodegradable cancer cell membrane-coated mesoporous copper/manganese silicate nanospheres (mCMSNs) with homotypic targeting ability to the cancer cell lines and enhanced ROS generation through singlet oxygen (1O2) production and glutathione (GSH)-activated Fenton reaction, showing excellent CDT/PDT synergistic therapeutic effects. We demonstrate that mCMSNs are able to relieve the tumor hypoxia microenvironment by catalytic decomposition of endogenous H2O2 to O2 and further react with O2 to produce toxic 1O2 with a 635 nm laser irradiation. GSH-triggered mCMSNs biodegradation can simultaneously generate Fenton-like Cu+ and Mn2+ ions and deplete GSH for efficient hydroxyl radical (•OH) production. The specific recognition and homotypic targeting ability to the cancer cells were also revealed. Notably, relieving hypoxia and GSH depletion disrupts the tumor microenvironment (TME) and cellular antioxidant defense system, achieving exceptional cancer-targeting therapeutic effects in vitro and in vivo. The cancer cells growth was significantly inhibited. Moreover, the released Mn2+ can also act as an advanced contrast agent for cancer magnetic resonance imaging (MRI). Thus, together with photosensitizers, Fenton agent provider and MRI contrast effects along with the modulating of the TME allow mCMSNs to realize MRI-monitored enhanced CDT/PDT synergistic therapy. It provides a paradigm to rationally design TME-responsive and ROS-involved therapeutic strategies based on a single polymetallic silicate nanomaterial with enhanced anticancer effects.
0
Citation556
0
Save
0

An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy

Conghui Liu et al.Apr 8, 2020
Abstract The therapeutic effect of reactive oxygen species (ROS)-involved cancer therapies is significantly limited by shortage of oxy-substrates, such as hypoxia in photodynamic therapy (PDT) and insufficient hydrogen peroxide (H 2 O 2 ) in chemodynamic therapy (CDT). Here, we report a H 2 O 2 /O 2 self-supplying nanoagent, (MSNs@CaO 2 -ICG)@LA, which consists of manganese silicate (MSN)-supported calcium peroxide (CaO 2 ) and indocyanine green (ICG) with further surface modification of phase-change material lauric acid (LA). Under laser irradiation, ICG simultaneously generates singlet oxygen and emits heat to melt the LA. The exposed CaO 2 reacts with water to produce O 2 and H 2 O 2 for hypoxia-relieved ICG-mediated PDT and H 2 O 2 -supplying MSN-based CDT, acting as an open source strategy for ROS production. Additionally, the MSNs-induced glutathione depletion protects ROS from scavenging, termed reduce expenditure. This open source and reduce expenditure strategy is effective in inhibiting tumor growth both in vitro and in vivo, and significantly improves ROS generation efficiency from multi-level for ROS-involved cancer therapies.
0

Erythrocyte–Cancer Hybrid Membrane Camouflaged Hollow Copper Sulfide Nanoparticles for Prolonged Circulation Life and Homotypic-Targeting Photothermal/Chemotherapy of Melanoma

Dongdong Wang et al.May 25, 2018
Cellular-membrane-coated nanoparticles have increasingly been pursued to leverage the natural cell functions for enhancing biocompatibility and improved therapeutic efficacy. Taking advantage of specialized cell membranes or combining functions from different membrane types facilitates the strengthening of their functionality. Herein, we fuse membrane materials derived from red blood cells (RBCs) and melanoma cells (B16-F10 cells) to create a hybrid biomimetic coating (RBC–B16), and RBC–B16 hybrid membrane camouflaged doxorubicin (DOX)-loaded hollow copper sulfide nanoparticles (DCuS@[RBC–B16] NPs) are fabricated for combination therapy of melanoma. The DCuS@[RBC–B16] NPs are comprehensively characterized, showing the inherent properties of the both source cells. Compared to the bare CuS NPs, the DCuS@[RBC–B16] NPs exhibit highly specific self-recognition to the source cell line in vitro and achieve markedly prolonged circulation lifetime and enhanced homogeneous targeting abilities in vivo inherited from the source cells. Thus, the DOX-loaded [RBC–B16]-coated CuS NP platform exhibits excellent synergistic photothermal/chemotherapy with about 100% melanoma tumor growth inhibition rate. The reported strategy may contribute to personalized nanomedicine of various tumors by combining the RBCs with a homotypic cancer membrane accordingly on the surface of the nanoparticle.
0
Citation412
0
Save
0

Metal–Organic Framework Nanoshuttle for Synergistic Photodynamic and Low‐Temperature Photothermal Therapy

Kai Zhang et al.Aug 31, 2018
Abstract Porous metal–organic frameworks (MOFs) nanostructures constructed from metal ion/ion clusters and organic bridging ligands hold great promise for biomedicine applications. The developing of nanoagents achieving accurate diagnosis and improved therapeutic effect is highly desirable. Herein, a new‐style versatile zirconium‐ferriporphyrin metal–organic framework (Zr‐FeP MOF) nanoshuttles is reported using a facile one‐pot hydrothermal method. The Zr‐FeP MOF nanoshuttles enable simultaneously to generate abundant reactive oxygen species including hydroxyl radical (·OH) and singlet oxygen ( 1 O 2 ) under a near‐infrared (NIR) laser irradiation. Significant photothermal effect of Zr‐FeP MOF nanoshuttles with photothermal conversion efficiency high to 33.7% is also demonstrated. Under a single NIR laser irradiation, the Zr‐FeP MOF nanoshuttles loaded with heat shock protein 70 siRNA efficiently suppress the tumor growth both in vitro and in vivo owing to the synergistic effect of photodynamic therapy (PDT) and low‐temperature photothermal therapy (PTT). Meanwhile, it exhibits good photothermal imaging, computed tomography, and photoacoustic imaging tri‐mode tumor‐specific imaging capability for tumor accurate diagnosis. This work contributes to design “all‐in‐one” nanoagents that realize multimodal imaging diagnosis and PDT and low‐temperature PTT synergistic treatments.
0

Highly Sensitive Multiple microRNA Detection Based on Fluorescence Quenching of Graphene Oxide and Isothermal Strand-Displacement Polymerase Reaction

Haifeng Dong et al.Apr 17, 2012
A simple, highly sensitive, and selective multiple microRNA (miRNA) detection method based on the graphene oxide (GO) fluorescence quenching and isothermal strand-displacement polymerase reaction (ISDPR) was proposed. The capability to discriminate ssDNA and double-stranded nucleic acid structure coupled with the extraordinary fluorescence quenching of GO on multiple organic dye allows the proposed strategy to simultaneously and selectively detect several miRNA labeled with different dyes in the same solution, while the ISDPR amplification endows the detection method with high sensitivity. The strong interaction between ssDNA and GO led to the fluorescent ssDNA probe exhibiting minimal background fluorescence. Upon the recognition of specific target miRNA, an ISDPR was triggered to produce numerous massive specific DNA-miRNA duplex helixes, and a strong emission was observed due to the weak interaction between the DNA-miRNA duplex helix and GO. A miRNA biosensor down to 2.1 fM with a linear range of 4 orders of magnitude was obtained. Furthermore, the large planar surface of GO allows simultaneous quenching of several DNA probes with different dyes and produces a multiple biosensing platform with high sensitivity and selectivity, which has promising application in profiling the pattern of miRNA expression and biomedical research.
0

Engineered Exosome-Mediated Near-Infrared-II Region V2C Quantum Dot Delivery for Nucleus-Target Low-Temperature Photothermal Therapy

Yu Cao et al.Jan 25, 2019
The limited penetration depth of photothermal agents (PTAs) active in the NIR-I biowindow and the thermoresistance caused by heat shock protein (HSP) significantly limit the therapeutic efficiency of photothermal therapy (PTT). To address the problem, we introduce a strategy of low-temperature nucleus-targeted PTT in the NIR-II region achieving effective tumor killing by combining the vanadium carbide quantum dots (V2C QDs) PTA and an engineered exosomes (Ex) vector. The small fluorescent V2C QDs with good photothermal effect in the NIR-II region were modified with TAT peptides and packaged into Ex with RGD modification (V2C-TAT@Ex-RGD). The resulting nanoparticles (NPs) exhibited good biocompatibility, long circulation time, and endosomal escape ability, and they could target the cell and enter into the nucleus to realize low-temperature PTT with advanced tumor destruction efficiency. The fluorescent imaging, photoacoustic imaging (PAI), and magnetic resonance imaging (MRI) capability of the NPs were also revealed. The low-temperature nucleus-targeted PTT in the NIR-II region provides more possibilities toward successful clinical application of PTT.
0
Citation246
0
Save
0

Aptamer-Conjugated Graphene Quantum Dots/Porphyrin Derivative Theranostic Agent for Intracellular Cancer-Related MicroRNA Detection and Fluorescence-Guided Photothermal/Photodynamic Synergetic Therapy

Yu Cao et al.Dec 13, 2016
Multifunctional theranostic platform coupling diagnostic and therapeutic functions holds great promise for personalized nanomedicine. Nevertheless, integrating consistently high performance in one single agent is still challenging. This work synthesized a sort of porphyrin derivatives (P) with high singlet oxygen generation ability and graphene quantum dots (GQDs) possessing good fluorescence properties. The P was conjugated to polyethylene glycol (PEG)ylated and aptamer-functionalized GQDs to gain a multifunctional theranostic agent (GQD-PEG-P). The resulting GQD-PEG-P displayed good physiological stability, excellent biocompatibility and low cytotoxicity. The intrinsic fluorescence of the GQDs could be used to discriminate cancer cells from somatic cells, whereas the large surface facilitated gene delivery for intracellular cancer-related microRNA (miRNA) detection. Importantly, it displayed a photothermal conversion efficiency of 28.58% and a high quantum yield of singlet oxygen generation up to 1.08, which enabled it to accomplish advanced photothermal therapy (PTT) and efficient photodynamic therapy (PDT) for cancer treatment. The combined PTT/PDT synergic therapy led to an outstanding therapeutic efficiency for cancer cell treatment.
0

Tunable Fabrication of Molybdenum Disulfide Quantum Dots for Intracellular MicroRNA Detection and Multiphoton Bioimaging

Wenhao Dai et al.Jun 1, 2015
Molybdenum disulfide (MoS2 ) quantum dots (QDs) (size <10 nm) possess attractive new properties due to the quantum confinement and edge effects as graphene QDs. However, the synthesis and application of MoS2 QDs has not been investigated in great detail. Here, a facile and efficient approach for synthesis of controllable-size MoS2 QDs with excellent photoluminescence (PL) by using a sulfuric acid-assisted ultrasonic route is developed for this investigation. Various MoS2 structures including monolayer MoS2 flake, nanoporous MoS2 , and MoS2 QDs can be yielded by simply controlling the ultrasonic durations. Comprehensive microscopic and spectroscopic tools demonstrate that the MoS2 QDs have uniform lateral size and possess excellent excitation-independent blue PL. The as-generated MoS2 QDs show high quantum yield of 9.65%, long fluorescence lifetime of 4.66 ns, and good fluorescent stability over broad pH values from 4 to 10. Given the good intrinsic optical properties and large surface area combined with excellent physiological stability and biocompatibility, a MoS2 QDs-based intracellular microRNA imaging analysis system is successfully constructed. Importantly, the MoS2 QDs show good performance as multiphoton bioimaging labeling. The proposed synthesis strategy paves a new way for facile and efficient preparing MoS2 QDs with tunable-size for biomedical imaging and optoelectronic devices application.
Load More