QW
Qingsong Wei
Author with expertise in Additive Manufacturing and 3D Printing Technologies
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(11% Open Access)
Cited by:
631
h-index:
29
/
i10-index:
38
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Shape memory effect enhancement via aging treatment of the Cu-Al-Mn-Si alloy manufactured using laser powder bed fusion

Honghao Xiang et al.Aug 10, 2024
This study investigated the effects of aging treatments (200–500℃, 1 h) on the Cu-11.1Al-8.15Mn-0.37Si shape memory alloy manufactured using laser powder bed fusion (LPBF). As the aging temperature increased, the residual stress of the alloy decreased, and the microstructure transitioned from an austenite-martensite dual-phase structure to an austenite single-phase structure. A phenomenon of martensite stabilization induced by low-temperature aging at 200–300℃ was observed, leading to increased phase transformation temperatures and decreased mechanical properties. After aging at 400℃, the plasticity was improved and the shape memory effect (SME) recovery strain experienced a significant 48 % enhancement and reached a maximum value of 3.10 %. This enhancement was due to the improved ordering and texture homogenization of the austenite phase, confirmed by EBSD results. Meanwhile, EPMA analyses revealed the pinning effect of Mn5Si3 precipitations migrated from the grain interior to the grain boundaries which no longer obstructed the movement of martensitic habit planes during the recovery process. Thus, the SME improved. Additionally, after aging at 500℃, a large amount of α phase precipitated along grain boundaries leading to a decrease in mechanical properties. These findings underscore the importance of tailored aging treatments for optimizing shape memory properties in LPBF-manufactured Cu-based shape memory alloys.
0

Recent Advances in Additive Manufacturing Technology: Achievements of the Rapid Manufacturing Center in Huazhong University of Science and Technology

Yusheng Shi et al.Jun 1, 2024
Additive manufacturing (AM) technology enables the creation of a wide variety of assemblies and complex shapes from three-dimensional model data in a bottom-up, layer-by-layer manner. Therefore, AM has revolutionized the modern manufacturing industry, attracting increasing interest from both academic and industrial fields. The Rapid Manufacturing Center (RMC) of the School of Materials Science and Engineering at the Huazhong University of Science and Technology (HUST), one of the earliest and most powerful AM research teams in China, has been engaged in AM research since 1991. Aiming to address the "stuck neck" problems of specific high-strength products for AM, the RMC has conducted full-chain research in the aspects of special materials, processes, equipment, and applications for AM. Moreover, it has formed a multi-disciplinary research team over the past three decades. Relevant research achievements in the AM field include winning five national awards, more than ten first prizes, and more than ten second prizes at the provincial and ministerial levels. The RMC was complimented as "the world's most influential organization in the laser AM field in 2018" by Virtual and Physical Prototyping (an international authoritative magazine of AM). Moreover, their industrialization achievements were evaluated as "having affected countries such as Singapore, South Korea, and the United States" by an international authoritative Wohlers Report on AM. In this study, we first summarize the representative research achievements of the RMC in the AM field. These include the preparation and processing technology of high-performance polymeric, metallic, and ceramic materials for AM; advanced processing technology and software/equipment for AM; and typical AM-fabricated products and their applications. Further, we discuss the latest research achievements in cutting-edge 4D printing in terms of feedstock selection, printing processes, induction strategies, and potential applications. Finally, we provide insights into the future directions of AM technology development: (ⅰ) Evolving from three-dimensional printing to multi-dimensional printing, (ⅱ) transitioning from plane slicing to curved surface slicing to woven slicing, (ⅲ) enhancing efficient formation from dot-line-sheet-volume printing, (ⅳ) shifting from single material to multi-materials AM, (ⅴ) advancing from the multiscale direction of macroscopic–mesoscopic–microscopic structures, (ⅵ) integrating material preparation with forming integration, (ⅶ) expanding from small batch to large batch.