MP
Md. Piran
Author with expertise in Internet of Things and Edge Computing
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(56% Open Access)
Cited by:
2,806
h-index:
38
/
i10-index:
90
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Survey of Multi-Access Edge Computing in 5G and Beyond: Fundamentals, Technology Integration, and State-of-the-Art

Quoc‐Viet Pham et al.Jan 1, 2020
Driven by the emergence of new compute-intensive applications and the vision of the Internet of Things (IoT), it is foreseen that the emerging 5G network will face an unprecedented increase in traffic volume and computation demands. However, end users mostly have limited storage capacities and finite processing capabilities, thus how to run compute-intensive applications on resource-constrained users has recently become a natural concern. Mobile edge computing (MEC), a key technology in the emerging fifth generation (5G) network, can optimize mobile resources by hosting compute-intensive applications, process large data before sending to the cloud, provide the cloud-computing capabilities within the radio access network (RAN) in close proximity to mobile users, and offer context-aware services with the help of RAN information. Therefore, MEC enables a wide variety of applications, where the real-time response is strictly required, e.g., driverless vehicles, augmented reality, robotics, and immerse media. Indeed, the paradigm shift from 4G to 5G could become a reality with the advent of new technological concepts. The successful realization of MEC in the 5G network is still in its infancy and demands for constant efforts from both academic and industry communities. In this survey, we first provide a holistic overview of MEC technology and its potential use cases and applications. Then, we outline up-to-date researches on the integration of MEC with the new technologies that will be deployed in 5G and beyond. We also summarize testbeds and experimental evaluations, and open source activities, for edge computing. We further summarize lessons learned from state-of-the-art research works as well as discuss challenges and potential future directions for MEC research.
0

A Survey on Internet of Things and Cloud Computing for Healthcare

L. Dang et al.Jul 9, 2019
The fast development of the Internet of Things (IoT) technology in recent years has supported connections of numerous smart things along with sensors and established seamless data exchange between them, so it leads to a stringy requirement for data analysis and data storage platform such as cloud computing and fog computing. Healthcare is one of the application domains in IoT that draws enormous interest from industry, the research community, and the public sector. The development of IoT and cloud computing is improving patient safety, staff satisfaction, and operational efficiency in the medical industry. This survey is conducted to analyze the latest IoT components, applications, and market trends of IoT in healthcare, as well as study current development in IoT and cloud computing-based healthcare applications since 2015. We also consider how promising technologies such as cloud computing, ambient assisted living, big data, and wearables are being applied in the healthcare industry and discover various IoT, e-health regulations and policies worldwide to determine how they assist the sustainable development of IoT and cloud computing in the healthcare industry. Moreover, an in-depth review of IoT privacy and security issues, including potential threats, attack types, and security setups from a healthcare viewpoint is conducted. Finally, this paper analyzes previous well-known security models to deal with security risks and provides trends, highlighted opportunities, and challenges for the IoT-based healthcare future development.
0

Sensor-based and vision-based human activity recognition: A comprehensive survey

L. Dang et al.Jul 22, 2020
Human activity recognition (HAR) technology that analyzes data acquired from various types of sensing devices, including vision sensors and embedded sensors, has motivated the development of various context-aware applications in emerging domains, e.g., the Internet of Things (IoT) and healthcare. Even though a considerable number of HAR surveys and review articles have been conducted previously, the major/overall HAR subject has been ignored, and these studies only focus on particular HAR topics. Therefore, a comprehensive review paper that covers major subjects in HAR is imperative. This survey analyzes the latest state-of-the-art research in HAR in recent years, introduces a classification of HAR methodologies, and shows advantages and weaknesses for methods in each category. Specifically, HAR methods are classified into two main groups, which are sensor-based HAR and vision-based HAR, based on the generated data type. After that, each group is divided into subgroups that perform different procedures, including the data collection, pre-processing methods, feature engineering, and the training process. Moreover, an extensive review regarding the utilization of deep learning in HAR is also conducted. Finally, this paper discusses various challenges in the current HAR topic and offers suggestions for future research.
0

Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey

Sweta Bhattacharya et al.Nov 5, 2020
Since December 2019, the coronavirus disease (COVID-19) outbreak has caused many death cases and affected all sectors of human life. With gradual progression of time, COVID-19 was declared by the world health organization (WHO) as an outbreak, which has imposed a heavy burden on almost all countries, especially ones with weaker health systems and ones with slow responses. In the field of healthcare, deep learning has been implemented in many applications, e.g., diabetic retinopathy detection, lung nodule classification, fetal localization, and thyroid diagnosis. Numerous sources of medical images (e.g., X-ray, CT, and MRI) make deep learning a great technique to combat the COVID-19 outbreak. Motivated by this fact, a large number of research works have been proposed and developed for the initial months of 2020. In this paper, we first focus on summarizing the state-of-the-art research works related to deep learning applications for COVID-19 medical image processing. Then, we provide an overview of deep learning and its applications to healthcare found in the last decade. Next, three use cases in China, Korea, and Canada are also presented to show deep learning applications for COVID-19 medical image processing. Finally, we discuss several challenges and issues related to deep learning implementations for COVID-19 medical image processing, which are expected to drive further studies in controlling the outbreak and controlling the crisis, which results in smart healthy cities.
0

A metaheuristic optimization approach for energy efficiency in the IoT networks

Celestine Iwendi et al.Feb 11, 2020
Summary Recently Internet of Things (IoT) is being used in several fields like smart city, agriculture, weather forecasting, smart grids, waste management, etc. Even though IoT has huge potential in several applications, there are some areas for improvement. In the current work, we have concentrated on minimizing the energy consumption of sensors in the IoT network that will lead to an increase in the network lifetime. In this work, to optimize the energy consumption, most appropriate Cluster Head (CH) is chosen in the IoT network. The proposed work makes use of a hybrid metaheuristic algorithm, namely, Whale Optimization Algorithm (WOA) with Simulated Annealing (SA). To select the optimal CH in the clusters of IoT network, several performance metrics such as the number of alive nodes, load, temperature, residual energy, cost function have been used. The proposed approach is then compared with several state‐of‐the‐art optimization algorithms like Artificial Bee Colony algorithm, Genetic Algorithm, Adaptive Gravitational Search algorithm, WOA. The results prove the superiority of the proposed hybrid approach over existing approaches.