ZL
Zhaoqi Li
Author with expertise in Metabolic Reprogramming in Cancer Biology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
326
h-index:
16
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Increased demand for NAD+ relative to ATP drives aerobic glycolysis

Alba Luengo et al.Jun 9, 2020
Abstract Aerobic glycolysis, or preferential fermentation of glucose-derived pyruvate to lactate despite available oxygen, is a hallmark of proliferative metabolism that is observed across many organisms and conditions. To better understand why aerobic glycolysis is associated with cell proliferation, we examined the metabolic consequence of activating the pyruvate dehydrogenase complex (PDH) to increase mitochondrial pyruvate oxidation at the expense of fermentation. We find that increasing PDH activity impairs cell proliferation by reducing the nicotinamide adenine dinucleotide cofactor ratio (NAD+/NADH). This change in NAD+/NADH ratio is caused by an increase in mitochondrial membrane potential that impairs mitochondrial electron transport and NAD+ regeneration. Uncoupling mitochondrial respiration from ATP synthesis or increasing ATP hydrolysis restores NAD+/NADH homeostasis and proliferation even when glucose oxidation is increased. These data suggest that when the demand for NAD+ to support oxidation reactions exceeds the demand for ATP consumption in cells, NAD+ regeneration by mitochondrial respiration becomes constrained, promoting fermentation despite available oxygen. This argues that cells engage in aerobic glycolysis when the cellular demand for NAD+ is in excess of the cellular demand for ATP.
1
Citation10
0
Save
0

Caloric restriction alters lipid metabolism to contribute to tumor growth inhibition

Evan Lien et al.Mar 10, 2020
Dietary interventions can change metabolite levels in the tumor microenvironment, which may then affect cancer cell metabolism to alter tumor growth. Although caloric restriction (CR) and the ketogenic diet (KD) are often thought to inhibit tumor growth through lowering blood glucose and insulin levels, only CR inhibits the growth of pancreatic ductal adenocarcinoma allografts in mice, demonstrating that this diet can limit tumor growth in other ways. A change in nutrient availability observed with CR, but not the KD, that can contribute to tumor growth inhibition is lower lipid levels in the plasma and in tumor interstitial fluid. Limiting exogenous lipid availability to cultured cancer cells results in up-regulation of stearoyl-CoA desaturase (SCD), an enzyme that converts saturated fatty acids to monounsaturated fatty acids. Fatty acid desaturation is required to dispose of toxic saturated fatty acids, and not because monounsaturated fatty acids are specifically needed for proliferation. Surprisingly, CR also inhibits tumor SCD activity, and enforced SCD expression confers resistance to the effects of CR. Therefore, CR both limits lipid availability and impairs tumor SCD activity, thereby limiting cancer cell adaptation to a diet-induced change in the tumor microenvironment that results in tumor growth inhibition.