DA
Denis Angers
Author with expertise in Soil Carbon Dynamics and Nutrient Cycling in Ecosystems
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(31% Open Access)
Cited by:
8,079
h-index:
86
/
i10-index:
227
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Soil carbon 4 per mille

Budiman Minasny et al.Jan 20, 2017
The ‘4 per mille Soils for Food Security and Climate’ was launched at the COP21 with an aspiration to increase global soil organic matter stocks by 4 per 1000 (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia). We asked whether the 4 per mille initiative is feasible for the region. The outcomes highlight region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates globally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha− 1), and at the first twenty years after implementation of best management practices. In addition, areas which have reached equilibrium will not be able to further increase their sequestration. We found that most studies on SOC sequestration only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille number was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille in the top 1m of global agricultural soils, SOC sequestration is between 2-3 Gt C year− 1, which effectively offset 20–35% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become viable. The challenge for cropping farmers is to find disruptive technologies that will further improve soil condition and deliver increased soil carbon. Progress in 4 per mille requires collaboration and communication between scientists, farmers, policy makers, and marketeers.
0
Paper
Citation1,566
0
Save
0

The knowns, known unknowns and unknowns of sequestration of soil organic carbon

Uta Stockmann et al.Nov 23, 2012
Soil contains approximately 2344 Gt (1 gigaton = 1 billion tonnes) of organic carbon globally and is the largest terrestrial pool of organic carbon. Small changes in the soil organic carbon stock could result in significant impacts on the atmospheric carbon concentration. The fluxes of soil organic carbon vary in response to a host of potential environmental and anthropogenic driving factors. Scientists worldwide are contemplating questions such as: ‘What is the average net change in soil organic carbon due to environmental conditions or management practices?’, ‘How can soil organic carbon sequestration be enhanced to achieve some mitigation of atmospheric carbon dioxide?’ and ‘Will this secure soil quality?’. These questions are far reaching, because maintaining and improving the world's soil resource is imperative to providing sufficient food and fibre to a growing population. Additional challenges are expected through climate change and its potential to increase food shortages. This review highlights knowledge of the amount of carbon stored in soils globally, and the potential for carbon sequestration in soil. It also discusses successful methods and models used to determine and estimate carbon pools and fluxes. This knowledge and technology underpins decisions to protect the soil resource.
0
Paper
Citation1,364
0
Save
0

Towards a minimum data set to assess soil organic matter quality in agricultural soils

E. Gregorich et al.Nov 1, 1994
Soil quality is a composite measure of both a soil’s ability to function and how well it functions, relative to a specific use. Soil quality can be assessed using a minimum data set comprising soil attributes such as texture, organic matter, pH, bulk density, and rooting depth. Soil organic matter has particular significance for soil quality as it can influence many different soil properties including other attributes of the minimum data set. Assessment of soil organic matter is a valuable step towards identifying the overall quality of a soil and may be so informative as to be included in minimum data sets used to evaluate the world’s soils.In this review, soil organic matter is considered to encompass a set of attributes rather than being a single entity. Included among the attributes and discussed here are total soil organic carbon and nitrogen, light fraction and macroorganic (particulate) matter, mineralizable carbon and nitrogen, microbial biomass, soil carbohydrates and enzymes. These attributes are involved in various soil processes, such as those related to nutrient storage, biological activity, and soil structure, and can be used to establish different minimum data sets for the evaluation of soil organic matter quality. Key words: Biological activity, minimum data set, nutrient storage, soil organic matter, soil quality, soil structure
0

Carbon accumulation in agricultural soils after afforestation: a meta‐analysis

Jérôme Laganière et al.Mar 26, 2009
Abstract Deforestation usually results in significant losses of soil organic carbon (SOC). The rate and factors determining the recovery of this C pool with afforestation are still poorly understood. This paper provides a review of the influence of afforestation on SOC stocks based on a meta‐analysis of 33 recent publications (totaling 120 sites and 189 observations), with the aim of determining the factors responsible for the restoration of SOC following afforestation. Based on a mixed linear model, the meta‐analysis indicates that the main factors that contribute to restoring SOC stocks after afforestation are: previous land use, tree species planted, soil clay content, preplanting disturbance and, to a lesser extent, climatic zone. Specifically, this meta‐analysis (1) indicates that the positive impact of afforestation on SOC stocks is more pronounced in cropland soils than in pastures or natural grasslands; (2) suggests that broadleaf tree species have a greater capacity to accumulate SOC than coniferous species; (3) underscores that afforestation using pine species does not result in a net loss of the whole soil‐profile carbon stocks compared with initial values (agricultural soil) when the surface organic layer is included in the accounting; (4) demonstrates that clay‐rich soils (> 33%) have a greater capacity to accumulate SOC than soils with a lower clay content (< 33%); (5) indicates that minimizing preplanting disturbances may increase the rate at which SOC stocks are replenished; and (6) suggests that afforestation carried out in the boreal climate zone results in small SOC losses compared with other climate zones, probably because trees grow more slowly under these conditions, although this does not rule out gains over time after the conversion. This study also highlights the importance of the methodological approach used when developing the sampling design, especially the inclusion of the organic layer in the accounting.
0
Paper
Citation807
0
Save
0

An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada

Martin Bolinder et al.Jun 24, 2006
The current interest in characterizing, predicting and managing soil C dynamics has focused attention on making estimates of C inputs to soil more accurate and precise. Net primary productivity (NPP) provides the inputs of carbon (C) in ecosystems and determines the amount of photosynthetically fixed C that can potentially be sequestered in soil organic matter. We present a method for estimating NPP and annual C inputs to soil for some common Canadian agroecosystems, using a series of plant C allocation coefficients for each crop type across the country. The root-derived C in these coefficients was estimated by reviewing studies reporting information on plant shoot-to-root (S:R) ratios (n = 168). Mean S:R ratios for annual crops were highest for small-grain cereals (7.4), followed by corn (5.6) and soybeans (5.2), and lowest for forages (1.6). The review also showed considerable uncertainty (coefficient of variation for S:R ratios of ∼50% for annual crops and ∼75% for perennial forages) in estimating below-ground NPP (BNPP) in agroecosystems; uncertainty was similar to that for Canadian boreal forests. The BNPP (including extra-root C) was lower for annual crops (∼20% of NPP) than for perennial forages (∼50%). The latter was similar to estimates for relative below-ground C allocation in other Canadian natural ecosystems such as mixed grasslands and forests. The proposed method is easy to use, specific for particular crops, management practices, and driven by agronomic yields. It can be readily up-dated with new experimental results and measurements of parameters used to quantify the accumulation and distribution of photosynthetically fixed C in different types of crops.
0
Paper
Citation601
0
Save
0

Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations

Claire Chenu et al.May 1, 2018
Recent initiatives, such as the United Nations declaring 2015 as the International Year of Soils and the French « 4 per 1000 » initiative call attention on soils and on the importance of maintaining and increasing soil organic matter stocks for soil fertility and food security, and for climate change adaptation and mitigation. We stress that soil organic carbon storage (i.e. an increase of soil organic carbon stocks) should be clearly differentiated from soil organic carbon sequestration, as the latter assumes a net removal of atmospheric CO2. Implementing management options that allow increasing soil organic carbon stocks at the local scale raises several questions, which are discussed in this article: how can we increase SOC stocks, at which rate and for how long; where do we prioritize SOC storage; how do we estimate the potential gain in C and which agricultural practices should we implement? We show that knowledge and tools are available to answer many of these questions, while further research remains necessary for others. A range of agricultural practices would require a re-assessment of their potential to store C and a better understanding of the underlying processes, such as no tillage and conservation agriculture, irrigation, practices increasing below ground inputs, organic amendments, and N fertilization. The vision emerging from the literature, showing the prominent role of soil microorganisms in the stabilization of soil organic matter, draw the attention to more exploratory potential levers, through changes in microbial physiology or soil biodiversity induced by agricultural practices, that require in-depth research.
0
Paper
Citation518
0
Save
0

Full-Inversion Tillage and Organic Carbon Distribution in Soil Profiles: A Meta-Analysis

Denis Angers et al.Aug 2, 2008
While the adoption of no‐till (NT) usually leads to the accumulation of soil organic C (SOC) in the surface soil layers, a number of studies have shown that this effect is sometimes partly or completely offset by greater SOC content near the bottom of the plow layer under full‐inversion tillage (FIT). Our purpose was to review the literature in which SOC profiles have been measured under paired NT and FIT situations. Only replicated and randomized studies directly comparing NT and FIT for >5 yr were considered. Profiles of SOC had to be measured to at least 30 cm. As expected, in most studies SOC content was significantly greater ( P < 0.05) under NT than FIT in the surface soil layers. At the 21‐ to 25‐cm soil depth, however, which corresponds to the mean plowing depth for the data set (23 cm), the average SOC content was significantly greater under FIT than NT. Moreover, under FIT, greater SOC content was observed just below the average depth of plowing (26–35 cm). On average, there was 4.9 Mg ha −1 more SOC under NT than FIT ( P = 0.03). Overall, this difference in favor of NT increased significantly but weakly with the duration of the experiment ( R 2 = 0.15, P = 0.05). The relative accumulation of SOC at depth under FIT could not be related to soil or climatic variables. Furthermore, the organic matter accumulating at depth under FIT appeared to be present in relatively stable form, but this hypothesis and the mechanisms involved require further investigation.
0

Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada

E. Gregorich et al.Mar 12, 2005
Agricultural soils can constitute either a net source or sink of the three principal greenhouse gases, carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). We compiled the most up-to-date information available on the contribution of agricultural soils to atmospheric levels of these gases and evaluated the mitigation potential of various management practices in eastern Canada and northeastern USA. Conversion of native ecosystems to arable cropping resulted in a loss of ∼22% of the original soil organic carbon (C)—a release of about 123 Tg C to the atmosphere; drainage and cultivation of organic soils resulted in an additional release of about 15 Tg C. Management practices that enhance C storage in soil include fertilization and legume- and forage-based rotations. Adopting no-till did not always increase soil C. This apparent absence of no-till effects on C storage was attributed to the type and depth of tillage, soil climatic conditions, the quantity and quality of residue C inputs, and soil fauna. Emission of N2O from soil increased linearly with the amount of mineral nitrogen (N) fertilizer applied (0.0119 kg N2O-N kg N−1). Application of solid manure resulted in substantially lower N2O emission (0.99 kg N2O-N ha−1 year−1) than application of liquid manure (2.83 kg N2O-N ha−1 year−1) or mineral fertilizer (2.82 kg N2O-N ha−1 year−1). Systems containing legumes produced lower annual N2O emission than fertilized annual crops, suggesting that alfalfa (Medicago sativa L.) and other legume forage crops be considered different from other crops when deriving national inventories of greenhouse gases from agricultural systems. Plowing manure or crop stubble into the soil in the autumn led to higher levels of N2O production (2.41 kg N2O-N ha−1 year−1) than if residues were left on the soil surface (1.19 kg N2O-N ha−1 year−1). Elevated N2O emission during freeze/thaw periods in winter and spring, suggests that annual N2O emission based only on growing-season measurements would be underestimated. Although measurements of CH4 fluxes are scant, it appears that agricultural soils in eastern Canada are a weak sink of CH4, and that this sink may be diminished through manuring. Although the influence of agricultural management on soil C storage and emission of greenhouse gases is significant, management practices often appear to involve offsets or tradeoffs, e.g., a particular practice may increase soil C storage but also increase emission of N2O. In addition, because of high variability, adequate spatial and temporal sampling are needed for accurate estimates of greenhouse gas flux and soil C stock. Therefore a full accounting of greenhouse gas contributions of agricultural soils is imperative for determining the true mitigation potential of management practices.
0
Paper
Citation451
0
Save
0

Impact of tillage practices on organic carbon and nitrogen storage in cool, humid soils of eastern Canada

Denis Angers et al.Apr 1, 1997
Soil organic matter storage capacity in agroecosystems varies with soil type, climate and agricultural management practices. The effects of different tillage systems on organic C and N storage were determined for a range of soils of eastern Canada mainly under continuous corn and small grain cereal production. Soil profiles from eight sites on which comparative tillage experiments had been performed for up to 11 years were sampled to a 60 cm depth in four increments (0–10, 10–20, 20–40 and 40–60cm). Organic C and N contents and dry bulk density were determined for each sampling depth. Bulk density measurements showed that the total soil mass in the soil profiles was not influenced by the tillage systems. No significant differences were found between tillage treatments in the total organic C and N storage down to 60 cm depth; the soil profiles under no-till (NT) and chisel plowing (CP) generally did not contain more C and N than those under conventional moldboard plowing (MP). However, the depth distribution of soil C and N varied with tillage. In the surface 0–10cm, C and N contents were higher under NT than under MP, whereas at deeper levels (20–40cm) the reverse trend was observed. It is concluded than under eastern Canadian conditions, where crop production and residue inputs are not affected by tillage, reduced tillage systems would not result in the storage of more soil organic matter in the entire soil profile at least in a 5–10 year period. Placement of the residues would be a major factor influencing the C and N distribution at specific depths.
0
Paper
Citation391
0
Save
0

Soil Security: Solving the Global Soil Crisis

Andrea Koch et al.Oct 28, 2013
Abstract Soil degradation is a critical and growing global problem. As the world population increases, pressure on soil also increases and the natural capital of soil faces continuing decline. International policy makers have recognized this and a range of initiatives to address it have emerged over recent years. However, a gap remains between what the science tells us about soil and its role in underpinning ecological and human sustainable development, and existing policy instruments for sustainable development. Functioning soil is necessary for ecosystem service delivery, climate change abatement, food and fiber production and fresh water storage. Yet key policy instruments and initiatives for sustainable development have under‐recognized the role of soil in addressing major challenges including food and water security, biodiversity loss, climate change and energy sustainability. Soil science has not been sufficiently translated to policy for sustainable development. Two underlying reasons for this are explored and the new concept of soil security is proposed to bridge the science–policy divide. Soil security is explored as a conceptual framework that could be used as the basis for a soil policy framework with soil carbon as an exemplar indicator.
0
Paper
Citation312
0
Save
Load More