JY
Jia Ye
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(67% Open Access)
Cited by:
11,170
h-index:
37
/
i10-index:
102
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data

Yuxin Chen et al.Dec 4, 2017
Quality control (QC) and preprocessing are essential steps for sequencing data analysis to ensure the accuracy of results. However, existing tools cannot provide a satisfying solution with integrated comprehensive functions, proper architectures, and highly scalable acceleration. In this article, we demonstrate SOAPnuke as a tool with abundant functions for a “QC-Preprocess-QC” workflow and MapReduce acceleration framework. Four modules with different preprocessing functions are designed for processing datasets from genomic, small RNA, Digital Gene Expression, and metagenomic experiments, respectively. As a workflow-like tool, SOAPnuke centralizes processing functions into 1 executable and predefines their order to avoid the necessity of reformatting different files when switching tools. Furthermore, the MapReduce framework enables large scalability to distribute all the processing works to an entire compute cluster. We conducted a benchmarking where SOAPnuke and other tools are used to preprocess a ∼30× NA12878 dataset published by GIAB. The standalone operation of SOAPnuke struck a balance between resource occupancy and performance. When accelerated on 16 working nodes with MapReduce, SOAPnuke achieved ∼5.7 times the fastest speed of other tools.
0
Paper
Citation1,587
0
Save
0

The Genomes of Oryza sativa: A History of Duplications

Jun Yu et al.Jan 21, 2005
We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000–40,000. Only 2%–3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family.
0
Citation925
0
Save
0

The diploid genome sequence of an Asian individual

Jun Wang et al.Nov 1, 2008
Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual’s genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics. The power of the latest massively parallel synthetic DNA sequencing technologies is demonstrated in two major collaborations that shed light on the nature of genomic variation with ethnicity. The first describes the genomic characterization of an individual from the Yoruba ethnic group of west Africa. The second reports a personal genome of a Han Chinese, the group comprising 30% of the world's population. These new resources can now be used in conjunction with the Venter, Watson and NIH reference sequences. A separate study looked at genetic ethnicity on the continental scale, based on data from 1,387 individuals from more than 30 European countries. Overall there was little genetic variation between countries, but the differences that do exist correspond closely to the geographic map. Statistical analysis of the genome data places 50% of the individuals within 310 km of their reported origin. As well as its relevance for testing genetic ancestry, this work has implications for evaluating genome-wide association studies that link genes with diseases.
0
Citation919
0
Save
0

WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update

Jia Ye et al.May 10, 2018
WEGO (Web Gene Ontology Annotation Plot), created in 2006, is a simple but useful tool for visualizing, comparing and plotting GO (Gene Ontology) annotation results. Owing largely to the rapid development of high-throughput sequencing and the increasing acceptance of GO, WEGO has benefitted from outstanding performance regarding the number of users and citations in recent years, which motivated us to update to version 2.0. WEGO uses the GO annotation results as input. Based on GO’s standardized DAG (Directed Acyclic Graph) structured vocabulary system, the number of genes corresponding to each GO ID is calculated and shown in a graphical format. WEGO 2.0 updates have targeted four aspects, aiming to provide a more efficient and up-to-date approach for comparative genomic analyses. First, the number of input files, previously limited to three, is now unlimited, allowing WEGO to analyze multiple datasets. Also added in this version are the reference datasets of nine model species that can be adopted as baselines in genomic comparative analyses. Furthermore, in the analyzing processes each Chi-square test is carried out for multiple datasets instead of every two samples. At last, WEGO 2.0 provides an additional output graph along with the traditional WEGO histogram, displaying the sorted P-values of GO terms and indicating their significant differences. At the same time, WEGO 2.0 features an entirely new user interface. WEGO is available for free at http://wego.genomics.org.cn.
0
Citation494
0
Save