MR
Mark Rudner
Author with expertise in Topological Insulators and Superconductors
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(100% Open Access)
Cited by:
5,821
h-index:
42
/
i10-index:
75
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs

Hendrik Bluhm et al.Dec 12, 2010
Electron spins in semiconductor structures are quantum bits with good prospects, but the information stored in the spin states tends to degrade quickly owing to interactions with nuclei in the host material. A study of GaAs quantum dots now provides a fuller understanding of this memory loss and how it can be suppressed. Quantum-memory times exceeding 200 μs are demonstrated, two orders of magnitude longer than previously reported for this system. Qubits, the quantum mechanical bits required for quantum computing, must retain their quantum states for times long enough to allow the information contained in them to be processed. In many types of electron-spin qubits, the primary source of information loss is decoherence due to the interaction with nuclear spins of the host lattice. For electrons in gate-defined GaAs quantum dots, spin-echo measurements have revealed coherence times of about 1 μs at magnetic fields below 100 mT (refs 1, 2). Here, we show that coherence in such devices can survive much longer, and provide a detailed understanding of the measured nuclear-spin-induced decoherence. At fields above a few hundred millitesla, the coherence time measured using a single-pulse spin echo is 30 μs. At lower fields, the echo first collapses, but then revives at times determined by the relative Larmor precession of different nuclear species. This behaviour was recently predicted3,4, and can, as we show, be quantitatively accounted for by a semiclassical model for the dynamics of electron and nuclear spins. Using a multiple-pulse Carr–Purcell–Meiboom–Gillecho sequence, the decoherence time can be extended to more than 200 μs, an improvement by two orders of magnitude compared with previous measurements1,2,5.
0

Observation of topologically protected bound states in photonic quantum walks

Takuya Kitagawa et al.Jun 6, 2012
Topological phases exhibit some of the most striking phenomena in modern physics. Much of the rich behaviour of quantum Hall systems, topological insulators, and topological superconductors can be traced to the existence of robust bound states at interfaces between different topological phases. This robustness has applications in metrology and holds promise for future uses in quantum computing. Engineered quantum systems—notably in photonics, where wavefunctions can be observed directly—provide versatile platforms for creating and probing a variety of topological phases. Here we use photonic quantum walks to observe bound states between systems with different bulk topological properties and demonstrate their robustness to perturbations—a signature of topological protection. Although such bound states are usually discussed for static (time-independent) systems, here we demonstrate their existence in an explicitly time-dependent situation. Moreover, we discover a new phenomenon: a topologically protected pair of bound states unique to periodically driven systems. Topological phases are unusual states of matter whose properties are robust against small perturbations. Using a photonic quantum walk system, Kitagawaet al. simulate one-dimensional topological phases and reveal novel topological phenomena far from the static or adiabatic regimes.
Load More