MJ
Margaret Johnson
Author with expertise in Galaxy Formation and Evolution in the Universe
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
3,147
h-index:
23
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing

T. Abbott et al.Aug 27, 2018
We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg$^2$ of $griz$ imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while blind to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat $\Lambda$CDM and $w$CDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for $\Lambda$CDM) or 7 (for $w$CDM) cosmological parameters including the neutrino mass density and including the 457 $\times$ 457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions, and from their combination obtain $S_8 \equiv \sigma_8 (\Omega_m/0.3)^{0.5} = 0.783^{+0.021}_{-0.025}$ and $\Omega_m = 0.264^{+0.032}_{-0.019}$ for $\Lambda$CDM for $w$CDM, we find $S_8 = 0.794^{+0.029}_{-0.027}$, $\Omega_m = 0.279^{+0.043}_{-0.022}$, and $w=-0.80^{+0.20}_{-0.22}$ at 68% CL. The precision of these DES Y1 results rivals that from the Planck cosmic microwave background measurements, allowing a comparison of structure in the very early and late Universe on equal terms. Although the DES Y1 best-fit values for $S_8$ and $\Omega_m$ are lower than the central values from Planck ...
0

The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models

P. Cowperthwaite et al.Oct 16, 2017
We present UV, optical, and NIR photometry of the first electromagnetic counterpart to a gravitational wave source from Advanced LIGO/Virgo, the binary neutron star merger GW170817. Our data set extends from the discovery of the optical counterpart at $0.47$ days to $18.5$ days post-merger, and includes observations with the Dark Energy Camera (DECam), Gemini-South/FLAMINGOS-2 (GS/F2), and the {\it Hubble Space Telescope} ({\it HST}). The spectral energy distribution (SED) inferred from this photometry at $0.6$ days is well described by a blackbody model with $T\approx 8300$ K, a radius of $R\approx 4.5\times 10^{14}$ cm (corresponding to an expansion velocity of $v\approx 0.3c$), and a bolometric luminosity of $L_{\rm bol}\approx 5\times10^{41}$ erg s$^{-1}$. At $1.5$ days we find a multi-component SED across the optical and NIR, and subsequently we observe rapid fading in the UV and blue optical bands and significant reddening of the optical/NIR colors. Modeling the entire data set we find that models with heating from radioactive decay of $^{56}$Ni, or those with only a single component of opacity from $r$-process elements, fail to capture the rapid optical decline and red optical/NIR colors. Instead, models with two components consistent with lanthanide-poor and lanthanide-rich ejecta provide a good fit to the data, the resulting "blue" component has $M_\mathrm{ej}^\mathrm{blue}\approx 0.01$ M$_\odot$ and $v_\mathrm{ej}^\mathrm{blue}\approx 0.3$c, and the "red" component has $M_\mathrm{ej}^\mathrm{red}\approx 0.04$ M$_\odot$ and $v_\mathrm{ej}^\mathrm{red}\approx 0.1$c. These ejecta masses are broadly consistent with the estimated $r$-process production rate required to explain the Milky Way $r$-process abundances, providing the first evidence that BNS mergers can be a dominant site of $r$-process enrichment.
0

Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear

M. Troxel et al.Aug 27, 2018
We use 26×106 galaxies from the Dark Energy Survey (DES) Year 1 shape catalogs over 1321 deg2 of the sky to produce the most significant measurement of cosmic shear in a galaxy survey to date. We constrain cosmological parameters in both the flat ΛCDM and the wCDM models, while also varying the neutrino mass density. These results are shown to be robust using two independent shape catalogs, two independent photo-z calibration methods, and two independent analysis pipelines in a blind analysis. We find a 3.5% fractional uncertainty on σ8(Ωm/0.3)0.5=0.782+0.027−0.027 at 68% C.L., which is a factor of 2.5 improvement over the fractional constraining power of our DES Science Verification results. In wCDM, we find a 4.8% fractional uncertainty on σ8(Ωm/0.3)0.5=0.777+0.036−0.038 and a dark energy equation-of-state w=−0.95+0.33−0.39. We find results that are consistent with previous cosmic shear constraints in σ8—Ωm, and we see no evidence for disagreement of our weak lensing data with data from the cosmic microwave background. Finally, we find no evidence preferring a wCDM model allowing w≠−1. We expect further significant improvements with subsequent years of DES data, which will more than triple the sky coverage of our shape catalogs and double the effective integrated exposure time per galaxy.12 MoreReceived 2 August 2017Corrected 28 August 2018DOI:https://doi.org/10.1103/PhysRevD.98.043528© 2018 American Physical SocietyPhysics Subject Headings (PhySH)Research AreasAstrophysical studies of gravityCosmological constantCosmological parametersEvolution of the UniverseGravitationGravitational lensesLarge scale structure of the UniverseSky surveysGravitation, Cosmology & Astrophysics
0

The Dark Energy Survey: Data Release 1

T. Abbott et al.Nov 26, 2018
We describe the first public data release of the Dark Energy Survey, DES DR1, consisting of reduced single-epoch images, co-added images, co-added source catalogs, and associated products and services assembled over the first 3 yr of DES science operations. DES DR1 is based on optical/near-infrared imaging from 345 distinct nights (2013 August to 2016 February) by the Dark Energy Camera mounted on the 4 m Blanco telescope at the Cerro Tololo Inter-American Observatory in Chile. We release data from the DES wide-area survey covering ∼5000 deg2 of the southern Galactic cap in five broad photometric bands, grizY. DES DR1 has a median delivered point-spread function of , r = 0.96, i = 0.88, z = 0.84, and Y = 090 FWHM, a photometric precision of <1% in all bands, and an astrometric precision of 151 . The median co-added catalog depth for a 195 diameter aperture at signal-to-noise ratio (S/N) = 10 is g = 24.33, r = 24.08, i = 23.44, z = 22.69, and Y = 21.44 . DES DR1 includes nearly 400 million distinct astronomical objects detected in ∼10,000 co-add tiles of size 0.534 deg2 produced from ∼39,000 individual exposures. Benchmark galaxy and stellar samples contain ∼310 million and ∼80 million objects, respectively, following a basic object quality selection. These data are accessible through a range of interfaces, including query web clients, image cutout servers, jupyter notebooks, and an interactive co-add image visualization tool. DES DR1 constitutes the largest photometric data set to date at the achieved depth and photometric precision.