KV
Kumar Virwani
Author with expertise in Memristive Devices for Neuromorphic Computing
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
2,627
h-index:
23
/
i10-index:
35
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

Neuromorphic computing using non-volatile memory

Geoffrey Burr et al.Dec 4, 2016
Dense crossbar arrays of non-volatile memory (NVM) devices represent one possible path for implementing massively-parallel and highly energy-efficient neuromorphic computing systems. We first review recent advances in the application of NVM devices to three computing paradigms: spiking neural networks (SNNs), deep neural networks (DNNs), and ‘Memcomputing’. In SNNs, NVM synaptic connections are updated by a local learning rule such as spike-timing-dependent-plasticity, a computational approach directly inspired by biology. For DNNs, NVM arrays can represent matrices of synaptic weights, implementing the matrix–vector multiplication needed for algorithms such as backpropagation in an analog yet massively-parallel fashion. This approach could provide significant improvements in power and speed compared to GPU-based DNN training, for applications of commercial significance. We then survey recent research in which different types of NVM devices – including phase change memory, conductive-bridging RAM, filamentary and non-filamentary RRAM, and other NVMs – have been proposed, either as a synapse or as a neuron, for use within a neuromorphic computing application. The relevant virtues and limitations of these devices are assessed, in terms of properties such as conductance dynamic range, (non)linearity and (a)symmetry of conductance response, retention, endurance, required switching power, and device variability.
0

Access devices for 3D crosspoint memory

Geoffrey Burr et al.Jul 1, 2014
The emergence of new nonvolatile memory (NVM) technologies—such as phase change memory, resistive, and spin-torque-transfer magnetic RAM—has been motivated by exciting applications such as storage class memory, embedded nonvolatile memory, enhanced solid-state disks, and neuromorphic computing. Many of these applications call for such NVM devices to be packed densely in vast “crosspoint” arrays offering many gigabytes if not terabytes of solid-state storage. In such arrays, access to any small subset of the array for accurate reading or low-power writing requires a strong nonlinearity in the IV characteristics, so that the currents passing through the selected devices greatly exceed the residual leakage through the nonselected devices. This nonlinearity can either be included explicitly, by adding a discrete access device at each crosspoint, or implicitly with an NVM device which also exhibits a highly nonlinear IV characteristic. This article reviews progress made toward implementing such access device functionality, focusing on the need to stack such crosspoint arrays vertically above the surface of a silicon wafer for increased effective areal density. The authors start with a brief overview of circuit-level considerations for crosspoint memory arrays, and discuss the role of the access device in minimizing leakage through the many nonselected cells, while delivering the right voltages and currents to the selected cell. The authors then summarize the criteria that an access device must fulfill in order to enable crosspoint memory. The authors review current research on various discrete access device options, ranging from conventional silicon-based semiconductor devices, to oxide semiconductors, threshold switch devices, oxide tunnel barriers, and devices based on mixed-ionic-electronic-conduction. Finally, the authors discuss various approaches for self-selected nonvolatile memories based on Resistive RAM.