VS
V. Smolčić
Author with expertise in Galaxy Formation and Evolution in the Universe
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(100% Open Access)
Cited by:
4,003
h-index:
54
/
i10-index:
112
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES

C. Laigle et al.Jun 1, 2016
ABSTRACT We present the COSMOS2015 24 catalog, which contains precise photometric redshifts and stellar masses for more than half a million objects over the 2deg 2 COSMOS field. Including new  images from the UltraVISTA-DR2 survey, Y-band images from Subaru/Hyper-Suprime-Cam, and infrared data from the Spitzer Large Area Survey with the Hyper-Suprime-Cam Spitzer legacy program, this near-infrared-selected catalog is highly optimized for the study of galaxy evolution and environments in the early universe. To maximize catalog completeness for bluer objects and at higher redshifts, objects have been detected on a χ 2 sum of the  and z ++ images. The catalog contains  objects in the 1.5 deg 2 UltraVISTA-DR2 region and  objects are detected in the “ultra-deep stripes” (0.62 deg 2 ) at  (3 σ , 3″, AB magnitude). Through a comparison with the zCOSMOS-bright spectroscopic redshifts, we measure a photometric redshift precision of  = 0.007 and a catastrophic failure fraction of  %. At  , using the unique database of spectroscopic redshifts in COSMOS, we find  = 0.021 and  . The deepest regions reach a 90% completeness limit of  to z = 4. Detailed comparisons of the color distributions, number counts, and clustering show excellent agreement with the literature in the same mass ranges. COSMOS2015 represents a unique, publicly available, valuable resource with which to investigate the evolution of galaxies within their environment back to the earliest stages of the history of the universe. The COSMOS2015 catalog is distributed via anonymous ftp and through the usual astronomical archive systems (CDS, ESO Phase 3, IRSA).
0

THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD

A. Karim et al.Mar 4, 2011
We explore the redshift evolution of the specific star formation rate (SSFR) for galaxies of different stellar mass by drawing on a deep 3.6 μm selected sample of >105 galaxies in the 2 deg2 COSMOS field. The average star formation rate (SFR) for subsets of these galaxies is estimated with stacked 1.4 GHz radio continuum emission. We separately consider the total sample and a subset of galaxies that shows evidence for substantive recent star formation in the rest-frame optical spectral energy distributions. At redshifts 0.2 < z < 3 both populations show a strong and mass-independent decrease in their SSFR toward the present epoch. It is best described by a power law (1 + z)n, where n ∼ 4.3 for all galaxies and n ∼ 3.5 for star-forming (SF) sources. The decrease appears to have started at z>2, at least for high-mass (M* ≳ 4 × 1010 M☉) systems where our conclusions are most robust. Our data show that there is a tight correlation with power-law dependence, SSFR ∝ M*β, between SSFR and stellar mass at all epochs. The relation tends to flatten below M* ≈ 1010 M☉ if quiescent galaxies are included; if they are excluded from the analysis a shallow index βSFG ≈ −0.4 fits the correlation. On average, higher mass objects always have lower SSFRs, also among SF galaxies. At z>1.5 there is tentative evidence for an upper threshold in SSFR that an average galaxy cannot exceed, possibly due to gravitationally limited molecular gas accretion. It is suggested by a flattening of the SSFR–M* relation (also for SF sources), but affects massive (>1010 M☉) galaxies only at the highest redshifts. Since z = 1.5 there thus is no direct evidence that galaxies of higher mass experience a more rapid waning of their SSFR than lower mass SF systems. In this sense, the data rule out any strong "downsizing" in the SSFR. We combine our results with recent measurements of the galaxy (stellar) mass function in order to determine the characteristic mass of an SF galaxy: we find that since z ∼ 3 the majority of all new stars were always formed in galaxies of M* = 1010.6±0.4 M☉. In this sense, too, there is no "downsizing." Finally, our analysis constitutes the most extensive SFR density determination with a single technique out to z = 3. Recent Herschel results are consistent with our results, but rely on far smaller samples.
0

Active galactic nuclei: what’s in a name?

P. Padovani et al.Aug 23, 2017
Active Galactic Nuclei (AGN) are energetic astrophysical sources powered by accretion onto supermassive black holes in galaxies, and present unique observational signatures that cover the full electromagnetic spectrum over more than twenty orders of magnitude in frequency. The rich phenomenology of AGN has resulted in a large number of different "flavours" in the literature that now comprise a complex and confusing AGN "zoo". It is increasingly clear that these classifications are only partially related to intrinsic differences between AGN, and primarily reflect variations in a relatively small number of astrophysical parameters as well the method by which each class of AGN is selected. Taken together, observations in different electromagnetic bands as well as variations over time provide complementary windows on the physics of different sub-structures in the AGN. In this review, we present an overview of AGN multi-wavelength properties with the aim of painting their "big picture" through observations in each electromagnetic band from radio to gamma-rays as well as AGN variability. We address what we can learn from each observational method, the impact of selection effects, the physics behind the emission at each wavelength, and the potential for future studies. To conclude we use these observations to piece together the basic architecture of AGN, discuss our current understanding of unification models, and highlight some open questions that present opportunities for future observational and theoretical progress.
0
Citation511
0
Save
0

Galaxies at redshifts 5 to 6 with systematically low dust content and high [C ii] emission

P. Capak et al.Jun 1, 2015
Measurements of [C ii] emission and dust emission from nine typical star-forming galaxies about one billion years after the Big Bang show that galaxies of this age have dust levels that are significantly lower than those of typical galaxies about two billion years later and comparable with those of local low-metallicity galaxies. Peter Capak et al. present sub-millimetre measurements of the 158 μm [C II] emission line that is a dominant cooling line for neutral gas — and of dust emission from nine typical star-forming galaxies at redshifts of 5 to 6, about one billion years after the Big Bang. They find that the dust levels in galaxies of this age are significantly lower than those found in typical star-forming galaxies about two billion years later, and comparable with those of local low-metallicity galaxies. The rest-frame ultraviolet properties of galaxies during the first three billion years of cosmic time (redshift z > 4) indicate a rapid evolution in the dust obscuration of such galaxies1,2,3. This evolution implies a change in the average properties of the interstellar medium, but the measurements are systematically uncertain owing to untested assumptions4,5 and the inability to detect heavily obscured regions of the galaxies. Previous attempts to measure the interstellar medium directly in normal galaxies at these redshifts have failed for a number of reasons6,7,8,9, with two notable exceptions10,11. Here we report measurements of the forbidden C ii emission (that is, [C ii]) from gas, and the far-infrared emission from dust, in nine typical star-forming galaxies about one billion years after the Big Bang (z ≈ 5–6). We find that these galaxies have thermal emission that is less than 1/12 that of similar systems about two billion years later, and enhanced [C ii] emission relative to the far-infrared continuum, confirming a strong evolution in the properties of the interstellar medium in the early Universe. The gas is distributed over scales of one to eight kiloparsecs, and shows diverse dynamics within the sample. These results are consistent with early galaxies having significantly less dust than typical galaxies seen at z < 3 and being comparable in dust content to local low-metallicity systems12.
0

PHOTOMETRIC REDSHIFT AND CLASSIFICATION FOR THEXMM-COSMOS SOURCES

M. Salvato et al.Dec 8, 2008
We present photometric redshifts and spectral energy distribution (SED) classifications for a sample of 1542 optically identified sources detected with XMM in the COSMOS field. Our template fitting classifies 46 sources as stars and 464 as nonactive galaxies, while the remaining 1032 require templates with an active galactic nucleus (AGN) contribution. High accuracy in the derived photometric redshifts was accomplished as the result of (1) photometry in up to 30 bands with high-significance detections, (2) a new set of SED templates, including 18 hybrids covering the far-UV to mid-infrared, which have been constructed by the combination of AGNs and nonactive galaxies templates, and (3) multiepoch observations that have been used to correct for variability (most important for type 1 AGNs). The reliability of the photometric redshifts is evaluated using the subsample of 442 sources with measured spectroscopic redshifts. We achieved an accuracy of for i*AB < 22.5 ( for i*AB < 24.5). The high accuracies were accomplished for both type 2 (where the SED is often dominated by the host galaxy) and type 1 AGNs and QSOs out to z = 4.5. The number of outliers is a large improvement over previous photometric redshift estimates for X-ray-selected sources (4.0% and 4.8% outliers for i*AB < 22.5 and i*AB < 24.5, respectively). We show that the intermediate band photometry is vital to achieving accurate photometric redshifts for AGNs, whereas the broad SED coverage provided by mid-infrared (Spitzer/IRAC) bands is important to reduce the number of outliers for normal galaxies.
0

STAR FORMATION AND DUST OBSCURATION AT z ≈ 2: GALAXIES AT THE DAWN OF DOWNSIZING

M. Pannella et al.Jun 1, 2009
We present first results of a study aimed to constrain the star formation rate and dust content of galaxies at z~2. We use a sample of BzK-selected star-forming galaxies, drawn from the COSMOS survey, to perform a stacking analysis of their 1.4 GHz radio continuum as a function of different stellar population properties, after removing AGN contaminants from the sample. Dust unbiased star formation rates are derived from radio fluxes assuming the local radio-IR correlation. The main results of this work are: i) specific star formation rates are constant over about 1 dex in stellar mass and up to the highest stellar mass probed; ii) the dust attenuation is a strong function of galaxy stellar mass with more massive galaxies being more obscured than lower mass objects; iii) a single value of the UV extinction applied to all galaxies would lead to grossly underestimate the SFR in massive galaxies; iv) correcting the observed UV luminosities for dust attenuation based on the Calzetti recipe provide results in very good agreement with the radio derived ones; v) the mean specific star formation rate of our sample steadily decreases by a factor of ~4 with decreasing redshift from z=2.3 to 1.4 and a factor of ~40 down the local Universe. These empirical SFRs would cause galaxies to dramatically overgrow in mass if maintained all the way to low redshifts, we suggest that this does not happen because star formation is progressively quenched, likely starting from the most massive galaxies.
0

STELLAR AND TOTAL BARYON MASS FRACTIONS IN GROUPS AND CLUSTERS SINCE REDSHIFT 1*

S. Giodini et al.Sep 3, 2009
ABSTRACT We investigate if the discrepancy between estimates of the total baryon mass fraction obtained from observations of the cosmic microwave background (CMB) and of galaxy groups/clusters persists when a large sample of groups is considered. To this purpose, 91 candidate X-ray groups/poor clusters at redshift 0.1 ⩽ z ⩽ 1 are selected from the COSMOS 2 deg 2 survey, based only on their X-ray luminosity and extent. This sample is complemented by 27 nearby clusters with a robust, analogous determination of the total and stellar mass inside R 500 . The total sample of 118 groups and clusters with z ⩽ 1 spans a range in M 500 of ∼10 13 –10 15 M ☉ . We find that the stellar mass fraction associated with galaxies at R 500 decreases with increasing total mass as M −0.37 ± 0.04 500 , independent of redshift. Estimating the total gas mass fraction from a recently derived, high-quality scaling relation, the total baryon mass fraction ( f stars+gas 500 = f stars 500 + f gas 500 ) is found to increase by ∼25%, when M 500 increases from 〈 M 〉 = 5 × 10 13 M ☉ to 〈 M 〉 = 7 × 10 14 M ☉ . After consideration of a plausible contribution due to intracluster light (11%–22% of the total stellar mass) and gas depletion through the hierarchical assembly process (10% of the gas mass), the estimated values of the total baryon mass fraction are still lower than the latest CMB measure of the same quantity (WMAP5), at a significance level of 3.3σ for groups of 〈 M 〉 = 5 × 10 13 M ☉ . The discrepancy decreases toward higher total masses, such that it is 1σ at 〈 M 〉 = 7 × 10 14 M ☉ . We discuss this result in terms of nongravitational processes such as feedback and filamentary heating.
0

Evolution of the dust emission of massive galaxies up toz= 4 and constraints on their dominant mode of star formation

M. Béthermin et al.Nov 20, 2014
We aim to measure the average dust and molecular gas content of massive star-forming galaxies ($\rm > 3 \times 10^{10}\,M_\odot$) up to z=4 in the COSMOS field to determine if the intense star formation observed at high redshift is induced by major mergers or caused by large gas reservoirs. Firstly, we measured the evolution of the average spectral energy distributions as a function of redshift using a stacking analysis of Spitzer, Herschel, LABOCA, and AzTEC data for two samples of galaxies: normal star-forming objects and strong starbursts, as defined by their distance to the main sequence. We found that the mean intensity of the radiation field $< U >$ heating the dust (strongly correlated with dust temperature) increases with increasing redshift up to z$\sim$4 in main-sequence galaxies. We can reproduce this evolution with simple models that account for the decrease of the gas metallicity with redshift. No evolution of $< U >$ with redshift is found in strong starbursts. We then deduced the evolution of the molecular gas fraction (defined here as $\rm M_{\rm mol}/(M_{\rm mol}+M_\star)$) with redshift and found a similar, steeply increasing trend for both samples. At z$\sim$4, this fraction reaches $\sim$60%. The average position of the main-sequence galaxies is on the locus of the local, normal star-forming disks in the integrated Schmidt-Kennicutt diagram (star formation rate versus mass of molecular gas), suggesting that the bulk of the star formation up to z=4 is dominated by secular processes.
0

COSMOS2020: A Panchromatic View of the Universe to z ∼ 10 from Two Complementary Catalogs

John Weaver et al.Jan 1, 2022
Abstract The Cosmic Evolution Survey (COSMOS) has become a cornerstone of extragalactic astronomy. Since the last public catalog in 2015, a wealth of new imaging and spectroscopic data have been collected in the COSMOS field. This paper describes the collection, processing, and analysis of these new imaging data to produce a new reference photometric redshift catalog. Source detection and multiwavelength photometry are performed for 1.7 million sources across the 2 deg 2 of the COSMOS field, ∼966,000 of which are measured with all available broadband data using both traditional aperture photometric methods and a new profile-fitting photometric extraction tool, The Farmer , which we have developed. A detailed comparison of the two resulting photometric catalogs is presented. Photometric redshifts are computed for all sources in each catalog utilizing two independent photometric redshift codes. Finally, a comparison is made between the performance of the photometric methodologies and of the redshift codes to demonstrate an exceptional degree of self-consistency in the resulting photometric redshifts. The i < 21 sources have subpercent photometric redshift accuracy and even the faintest sources at 25 < i < 27 reach a precision of 5%. Finally, these results are discussed in the context of previous, current, and future surveys in the COSMOS field. Compared to COSMOS2015, it reaches the same photometric redshift precision at almost one magnitude deeper. Both photometric catalogs and their photometric redshift solutions and physical parameters will be made available through the usual astronomical archive systems (ESO Phase 3, IPAC-IRSA, and CDS).