SS
Stefan Schreiber
Author with expertise in Reciprocal Development of TH17 and Treg Cells
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(93% Open Access)
Cited by:
5,105
h-index:
53
/
i10-index:
105
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The NLR Gene Family: A Standard Nomenclature

Jenny Ting et al.Mar 1, 2008
Immune regulatory proteins such as CIITA, NAIP, IPAF, NOD1, NOD2, NALP1, and cryopyrin (also known as NALP3) are members of a family characterized by the presence of a NACHT nucleotide-binding domain (NBD) and leucine-rich repeats (LRRs). Members of this gene family encode a protein structure similar to the NB-LRR subgroup of disease-resistance genes in plants and are involved in the sensing of pathogenic products and the regulation of cell signaling and death. Currently, a variety of different names are used to describe the products encoded by the NBD and LRR containing gene family, its subfamilies, and individual genes, including CATERPILLER (CLR), NOD-LRR, NACHT-LRR, NOD-like receptor, CARD, NALP, NOD, PAN, and PYPAF. This lack of consistency has led to a pressing need to unify the nomenclature for this gene family. Consequently, we propose a standardized nomenclature, NLR, which stands for the nucleotide-binding domain and leucine-rich repeat containing gene family. The NLR family includes several subfamilies distinguishable by their N-terminal effector domains. There are four recognizable NLR N-terminal domains: acidic transactivation domain, pyrin domain, caspase recruitment domain (CARD), and baculoviral inhibitory repeat (BIR)-like domains (see Table 1 for the human NLR genes). These N-terminal domains have been used by several groups to subdivide the NLR gene family, and there are now multiple names for each subfamily: the largest pyrin-containing subfamily has been named PAN, NALP, and PYPAF; members of the CARD-containing subfamily have been named CARDs or NODs; the BIR-containing subfamily has been named NAIP or BIRC.Table 1New Approved Designations for the Human NLR Family MembersNLR FamilyHGNC-Approved SymbolApproved NameOther Names and AliasesDomain OrganizationProtein SequenceNLRACIITAclass II, major histocompatibility complex, transactivatorNLRA; MHC2TA; C2TA(CARD)-AD-NACHT-NAD-LRRNP_000237NLRBNAIPNLR family, apoptosis inhibitory proteinNLRB1; BIRC1; CLR5.1BIR3x-NACHT-LRRNP_004527NLRCNOD1nucleotide-binding oligomerization domain containing 1NLRC1; CARD4; CLR7.1CARD-NACHT-NAD-LRRNP_006083NLRCNOD2nucleotide-binding oligomerization domain containing 2NLRC2; CARD15; CD; BLAU; IBD1; PSORAS1; CLR16.3CARD2x-NACHT-NAD-LRRNP_071445NLRCNLRC3NLR family, CARD domain containing 3NOD3; CLR16.2CARD-NACHT-NAD-LRRNP_849172NLRCNLRC4NLR family, CARD domain containing 4CARD12; CLAN; CLR2.1; IPAFCARD-NACHT-NAD-LRRNP_067032NLRCNLRC5NLR family, CARD domain containing 5NOD27; CLR16.1CARD-NACHT-NAD-LRRNP_115582NLRPNLRP1NLR family, pyrin domain containing 1NALP1; DEFCAP; NAC; CARD7; CLR17.1PYD-NACHT-NAD-LRR-FIIND-CARDNP_127497NLRPNLRP2NLR family, pyrin domain containing 2NALP2; PYPAF2; NBS1; PAN1; CLR19.9PYD-NACHT-NAD-LRRNP_060322NLRPNLRP3NLR family, pyrin domain containing 3CIAS1; PYPAF1; Cryopyrin; CLR1.1; NALP3PYD-NACHT-NAD-LRRNP_004886NLRPNLRP4NLR family, pyrin domain containing 4NALP4; PYPAF4; PAN2; RNH2; CLR19.5PYD-NACHT-NAD-LRRNP_604393NLRPNLRP5NLR family, pyrin domain containing 5NALP5; PYPAF8; MATER; PAN11; CLR19.8PYD-NACHT-NAD-LRRNP_703148NLRPNLRP6NLR family, pyrin domain containing 6NALP6; PYPAF5; PAN3; CLR11.4PYD-NACHT-NAD-LRRNP_612202NLRPNLRP7NLR family, pyrin domain containing 7NALP7; PYPAF3; NOD12; PAN7; CLR19.4PYD-NACHT-NAD-LRRNP_996611NLRPNLRP8NLR family, pyrin domain containing 8NALP8; PAN4; NOD16; CLR19.2PYD-NACHT-NAD-LRRNP_789781NLRPNLRP9NLR family, pyrin domain containing 9NALP9; NOD6; PAN12; CLR19.1PYD-NACHT-NAD-LRRNP_789790NLRPNLRP10NLR family, pyrin domain containing 10NALP10; PAN5; NOD8; PYNOD; CLR11.1PYD-NACHT-NADNP_789791NLRPNLRP11NLR family, pyrin domain containing 11NALP11; PYPAF6; NOD17; PAN10; CLR19.6PYD-NACHT-NAD-LRRNP_659444NLRPNLRP12NLR family, pyrin domain containing 12NALP12; PYPAF7; Monarch1; RNO2; PAN6; CLR19.3PYD-NACHT-NAD-LRRNP_653288NLRPNLRP13NLR family, pyrin domain containing 13NALP13; NOD14; PAN13; CLR19.7PYD-NACHT-NAD-LRRNP_789780NLRPNLRP14NLR family, pyrin domain containing 14NALP14; NOD5; PAN8; CLR11.2PYD-NACHT-NAD-LRRNP_789792NLRXNLRX1NLR family member X1NOD9; CLR11.3X-NACHT-NAD-LRRNP_078894The following abbreviations are used: AD, acidic activation domain CARD, caspase activating and recruitment domain; LRR, leucine-rich repeat; NACHT, domain present in NAIP, CIITA, HET-E, and TP-1; BIR, baculovirus inhibitor of apoptosis repeat; PYD, pyrin domain; and NAD, NACHT-associated domain. Open table in a new tab The following abbreviations are used: AD, acidic activation domain CARD, caspase activating and recruitment domain; LRR, leucine-rich repeat; NACHT, domain present in NAIP, CIITA, HET-E, and TP-1; BIR, baculovirus inhibitor of apoptosis repeat; PYD, pyrin domain; and NAD, NACHT-associated domain. In consultation with over 100 scientists, through a stepwise voting process organized by the Human Genome Organisation (HUGO) Gene Nomenclature Committee (HGNC) and conducted via email and updated web pages, a new nomenclature system for human and mouse NLR genes has been agreed upon (see Table S1 available online for human and mouse NLR genes). It was agreed that the family name “nucleotide-binding domain and leucine-rich repeat containing” should be used to highlight these two evolutionarily conserved domains and to reflect the similarity of the NLR family to the plant NB-LRR proteins. Furthermore, the consensus of opinion was that a subfamily-derived nomenclature system based on the N-terminal effector domains should be implemented. Consequently, four subfamily designations have been approved: NLRA, NLR family, acidic domain containing; NLRB, NLR family, BIR domain containing; NLRC, NLR family, CARD domain containing; NLRP, NLR family, pyrin domain containing; NLRX, NLR family with no strong homology to the N-terminal domain of any other NLR subfamily member (Table 1). Each member within a subfamily is given a number, e.g., NLRP1. Four members of the NLR family, CIITA, NAIP, NOD1, and NOD2, have not been renamed. These four genes are associated with a large volume of literature, and it was agreed that renaming these would cause confusion in the literature. However, each of these genes has been given a subfamily alias to enable electronic data-retrieval systems to link these four genes to the NLR gene family. Clearly related genes, such as NLRP10 and Naip3-6, that do not encode NBD and/or LRR are included for completeness and historic reasons. To distinguish between human and mouse NLR genes, the human genes are written in upper case, whereas murine orthologs are distinguished from the human genes by the use of uppercase for the first letter only, followed by lowercase (Table S1). Although several human NLR genes have multiple murine paralogs, some human NLR genes do not appear to have any murine counterparts, reflecting the dynamic evolutionary contraction and expansion of this family. The nomenclature described in this paper has been approved by the HGNC and the Mouse Genomic Nomenclature Committee. Concerted use of this unified nomenclature will reduce confusion and disparity and promote the transparency of this important field. We urge all investigators to adopt the approved nomenclature in future publications and presentations. We would like to thank all of the scientists who have taken part in the discussions leading to the approved nomenclature for this gene family. We also would like to thank the HGNC (http://www.genenames.org) for the time they have spent discussing the issues surrounding the nomenclature of this gene family. Download .pdf (.02 MB) Help with pdf files Document S1. New Approved Designations for Human and Mouse NLR Family Members
0
Citation869
0
Save
0

Correlation between Genetic and Geographic Structure in Europe

Óscar Lao et al.Aug 1, 2008

Summary

 Understanding the genetic structure of the European population is important, not only from a historical perspective, but also for the appropriate design and interpretation of genetic epidemiological studies. Previous population genetic analyses with autosomal markers in Europe either had a wide geographic but narrow genomic coverage [1, 2], or vice versa [3–6]. We therefore investigated Affymetrix GeneChip 500K genotype data from 2,514 individuals belonging to 23 different subpopulations, widely spread over Europe. Although we found only a low level of genetic differentiation between subpopulations, the existing differences were characterized by a strong continent-wide correlation between geographic and genetic distance. Furthermore, mean heterozygosity was larger, and mean linkage disequilibrium smaller, in southern as compared to northern Europe. Both parameters clearly showed a clinal distribution that provided evidence for a spatial continuity of genetic diversity in Europe. Our comprehensive genetic data are thus compatible with expectations based upon European population history, including the hypotheses of a south-north expansion and/or a larger effective population size in southern than in northern Europe. By including the widely used CEPH from Utah (CEU) samples into our analysis, we could show that these individuals represent northern and western Europeans reasonably well, thereby confirming their assumed regional ancestry.
0
Citation465
0
Save
0

Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing

Julia Richter et al.Nov 11, 2012
Reiner Siebert and colleagues report whole-genome, whole-exome and transcriptome sequencing of Burkitt lymphomas. They identify recurrent mutations in several genes not previously known to be mutated in Burkitt lymphoma, including ID3, FBXO11, DDX3X and RHOA. Burkitt lymphoma is a mature aggressive B-cell lymphoma derived from germinal center B cells1. Its cytogenetic hallmark is the Burkitt translocation t(8;14)(q24;q32) and its variants, which juxtapose the MYC oncogene with one of the three immunoglobulin loci2. Consequently, MYC is deregulated, resulting in massive perturbation of gene expression3. Nevertheless, MYC deregulation alone seems not to be sufficient to drive Burkitt lymphomagenesis. By whole-genome, whole-exome and transcriptome sequencing of four prototypical Burkitt lymphomas with immunoglobulin gene (IG)-MYC translocation, we identified seven recurrently mutated genes. One of these genes, ID3, mapped to a region of focal homozygous loss in Burkitt lymphoma4. In an extended cohort, 36 of 53 molecularly defined Burkitt lymphomas (68%) carried potentially damaging mutations of ID3. These were strongly enriched at somatic hypermutation motifs. Only 6 of 47 other B-cell lymphomas with the IG-MYC translocation (13%) carried ID3 mutations. These findings suggest that cooperation between ID3 inactivation and IG-MYC translocation is a hallmark of Burkitt lymphomagenesis.
0
Citation417
0
Save
0

Longitudinal Multi-omics Analyses Identify Responses of Megakaryocytes, Erythroid Cells, and Plasmablasts as Hallmarks of Severe COVID-19

Joana Bernardes et al.Nov 26, 2020
Temporal resolution of cellular features associated with a severe COVID-19 disease trajectory is needed for understanding skewed immune responses and defining predictors of outcome. Here, we performed a longitudinal multi-omics study using a two-center cohort of 14 patients. We analyzed the bulk transcriptome, bulk DNA methylome, and single-cell transcriptome (>358,000 cells, including BCR profiles) of peripheral blood samples harvested from up to 5 time points. Validation was performed in two independent cohorts of COVID-19 patients. Severe COVID-19 was characterized by an increase of proliferating, metabolically hyperactive plasmablasts. Coinciding with critical illness, we also identified an expansion of interferon-activated circulating megakaryocytes and increased erythropoiesis with features of hypoxic signaling. Megakaryocyte- and erythroid-cell-derived co-expression modules were predictive of fatal disease outcome. The study demonstrates broad cellular effects of SARS-CoV-2 infection beyond adaptive immune cells and provides an entry point toward developing biomarkers and targeted treatments of patients with COVID-19.
0
Citation331
0
Save
0

Polymorphisms of the IL12B and IL23R Genes Are Associated with Psoriasis

Rajan Nair et al.Jan 24, 2008
Psoriasis is a common inflammatory and hyperproliferative skin disease with a multifactorial genetic basis. A recent study reported that psoriasis was associated with the IL12B haplotype rs3212227 (3'-untranslated region)-rs6887695 (60 kb, 5') and the IL23R haplotype rs7530511 (L310P)-rs11209026 (Q381R). We examined these four single-nucleotide polymorphisms (SNPs) for association with psoriasis in two groups of North American and German Caucasians: (1) 1,810 cases and 2,522 controls; and (2) 509 pedigrees. Both IL12B markers showed highly significant association with psoriasis in the case-control (rs3212227, odds ratio (OR)=1.62, P=1.7 x 10(-15); rs6887695, OR=1.49, P=2.7 x 10(-15)) and in the family-based analysis (rs3212227, P=2.2 x 10(-3); rs6887695, P=1.7 x 10(-3)). The IL23R SNPs also showed significant association in the cases and controls (rs7530511, OR=1.22, P=3.9 x 10(-3); rs11209026, OR=1.40, P=3.8 x 10(-4)). For both genes, common risk haplotypes were identified whose statistical significance approached (IL23R) or exceeded (IL12B) genome-wide criteria. We found no statistical evidence for interactions of these haplotypes with HLA-Cw6. Our results confirm associations between IL12B and IL23R and psoriasis in Caucasians, and provide a genetic basis for the clinical association between psoriasis and Crohn's disease.
0
Citation274
0
Save
0

Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting

Claudia Fritsch et al.Aug 9, 2012
So far, the annotation of translation initiation sites (TISs) has been based mostly upon bioinformatics rather than experimental evidence. We adapted ribosomal footprinting to puromycin-treated cells to generate a transcriptome-wide map of TISs in a human monocytic cell line. A neural network was trained on the ribosomal footprints observed at previously annotated AUG translation initiation codons (TICs), and used for the ab initio prediction of TISs in 5062 transcripts with sufficient sequence coverage. Functional interpretation suggested 2994 novel upstream open reading frames (uORFs) in the 5′ UTR, 1406 uORFs overlapping with the coding sequence, and 546 N-terminal protein extensions. The TIS detection method was validated on the basis of previously published alternative TISs and uORFs. Among primates, TICs in newly annotated TISs were significantly more conserved than control codons, both for AUGs and near-cognate codons. The transcriptome-wide map of novel candidate TISs derived as part of the study will shed further light on the way in which human proteome diversity is influenced by alternative translation initiation and regulation.
0
Citation216
0
Save
Load More