PJ
P. James
Author with expertise in Gamma-Ray Bursts and Supernovae Connections
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
1,725
h-index:
45
/
i10-index:
109
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A kilonova as the electromagnetic counterpart to a gravitational-wave source

S. Smartt et al.Oct 16, 2017
Observations and modelling of an optical transient counterpart to a gravitational-wave event and γ-ray burst reveal that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a source of heavy elements. Merging neutron stars are potential sources of gravitational waves and have long been predicted to produce jets of material as part of a low-luminosity transient known as a 'kilonova'. There is growing evidence that neutron-star mergers also give rise to short, hard gamma-ray bursts. A group of papers in this issue report observations of a transient associated with the gravitational-wave event GW170817—a signature of two neutron stars merging and a gamma-ray flash—that was detected in August 2017. The observed gamma-ray, X-ray, optical and infrared radiation signatures support the predictions of an outflow of matter from double neutron-star mergers and present a clear origin for gamma-ray bursts. Previous predictions differ over whether the jet material would combine to form light or heavy elements. These papers now show that the early part of the outflow was associated with lighter elements whereas the later observations can be explained by heavier elements, the origins of which have been uncertain. However, one paper (by Stephen Smartt and colleagues) argues that only light elements are needed for the entire event. Additionally, Eleonora Troja and colleagues report X-ray observations and radio emissions that suggest that the 'kilonova' jet was observed off-axis, which could explain why gamma-ray-burst detections are seen as dim. Gravitational waves were discovered with the detection of binary black-hole mergers1 and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova2,3,4,5. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate6. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst7,8. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of −1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90–140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
0

Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star

P. Nugent et al.Dec 1, 2011
Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.
0

A faint type of supernova from a white dwarf with a helium-rich companion

Hagai Perets et al.May 1, 2010
The novel properties of the faint supernova SN 2005E mean that it does not fit readily into the established supernova categories. Types Ib, Ic and II, core-collapse supernovae, are thought to form when a massive star explodes at the end of its life, and type Ia as a result of the thermonuclear explosion of an accreting white dwarf. From spectroscopic data, Perets et al. conclude that SN 2005E is helium rich, like a type Ib, and lacks the hydrogen, silicon and sulphur spectral lines typical of type Ia. But based on its presence in an 'old' stellar environment, and with a low derived ejected mass, they argue against a core-collapse origin and for an origin from a low-mass, old progenitor, probably a helium-accreting white dwarf in a binary system. Kawabata et al. see it differently. SN 2005E resembles SN 2005cz, they say, a type Ib supernova that is unusual in being found in an elliptical galaxy. Both SN 2005E and SN 2005cz, they suggest, are best explained as products of the core collapse of massive stars at the low (6–12 solar mass) end of massiveness. In the accompanying News & Views, David Branch discusses these two models in the context of the latest thinking on how stars explode. Supernovae are thought to arise through one of two processes. Type Ib/c and type II supernovae are produced when the cores of massive, short-lived stars undergo gravitational core collapse and eject a few solar masses. Type Ia supernovae are thought to form by the thermonuclear detonation of a carbon-oxygen white dwarf. Here a faint type Ib supernova, SN 2005E, is reported that seems not to have had a core-collapse origin, but perhaps arose from a low-mass, old progenitor, probably a helium-accreting white dwarf in a binary. Supernovae are thought to arise from two different physical processes. The cores of massive, short-lived stars undergo gravitational core collapse and typically eject a few solar masses during their explosion. These are thought to appear as type Ib/c and type II supernovae, and are associated with young stellar populations. In contrast, the thermonuclear detonation of a carbon-oxygen white dwarf, whose mass approaches the Chandrasekhar limit, is thought to produce type Ia supernovae1,2. Such supernovae are observed in both young and old stellar environments. Here we report a faint type Ib supernova, SN 2005E, in the halo of the nearby isolated galaxy, NGC 1032. The ‘old’ environment near the supernova location, and the very low derived ejected mass (∼0.3 solar masses), argue strongly against a core-collapse origin. Spectroscopic observations and analysis reveal high ejecta velocities, dominated by helium-burning products, probably excluding this as a subluminous3,4 or a regular1 type Ia supernova. We conclude that it arises from a low-mass, old progenitor, likely to have been a helium-accreting white dwarf in a binary. The ejecta contain more calcium than observed in other types of supernovae and probably large amounts of radioactive 44Ti.
0

Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae

J. Lyman et al.Jan 20, 2016
Literature data are collated for 38 stripped-envelope core-collapse supernovae (SE SNe; i.e. SNe IIb, Ib, Ic and Ic-BL) that have good light curve coverage in more than one optical band. Using bolometric corrections derived in previous work, the bolometric light curve of each SN is recovered and template bolometric light curves provided. Peak light distributions and decay rates are investigated; SNe subtypes are not cleanly distinguished in this parameter space, although some grouping of types does occur and there is a suggestion of a Phillips-like relation for most SNe Ic-BL. The bolometric light curves are modelled with a simple analytical prescription and compared to results from more detailed modelling. Distributions of the explosion parameters shows the extreme nature of SNe Ic-BL in terms of their 56Ni mass and the kinetic energy, however ejected masses are similar to other subtypes. SNe Ib and Ic have very similar distributions of explosion parameters, indicating a similarity in progenitors. SNe~IIb are the most homogeneous subtype and have the lowest average values for 56Ni mass, ejected mass, and kinetic energy. Ejecta masses for each subtype and SE SNe as a whole are inconsistent with those expected from very massive stars. The majority of the ejecta mass distribution is well described by more moderately massive progenitors in binaries, indicating these are the dominant progenitor channel for SE SNe.