KH
Kenneth Harris
Author with expertise in Neuronal Oscillations in Cortical Networks
National Institute for Nanotechnology, University of Alberta, National Research Council Canada
+ 18 more
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
22
(23% Open Access)
Cited by:
91
h-index:
87
/
i10-index:
362
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
5

Nonsense correlations in neuroscience

Kenneth HarrisDec 1, 2020
K
Many neurophysiological signals exhibit slow continuous trends over time. Because standard correlation analyses assume that all samples are independent, they can yield apparently significant “nonsense correlations” even for signals that are completely unrelated. Here we compare the performance of several methods for assessing correlations between timeseries, using simulated slowly drifting signals with and without genuine correlations. The best performance was obtained from a “pseudosession method”, which relies on one of the signals being randomly generated by the experimenter, or a “session perturbation” method which requires multiple recordings under the same conditions. If neither of these is applicable, a “linear shift” method can be used when one of the signals is stationary. Methods based on cross-validation, circular shifting, phase randomization, or detrending gave up to 100% false positive rates in our simulations. We conclude that analysis of neural timeseries is best performed when stationarity and randomization is built into the experimental design.
5
Citation42
0
Save
386

Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings

Nicholas Steinmetz et al.Oct 11, 2023
+33
А
Ç
N
Abstract To study the dynamics of neural processing across timescales, we require the ability to follow the spiking of thousands of individually separable neurons over weeks and months, during unrestrained behavior. To address this need, we introduce the Neuropixels 2.0 probe together with novel analysis algorithms. The new probe has over 5,000 sites and is miniaturized such that two probes plus a headstage, recording 768 sites at once, weigh just over 1 g, suitable for implanting chronically in small mammals. Recordings with high quality signals persisting for at least two months were reliably obtained in two species and six different labs. Improved site density and arrangement combined with new data processing methods enable automatic post-hoc stabilization of data despite brain movements during behavior and across days, allowing recording from the same neurons in the mouse visual cortex for over 2 months. Additionally, an optional configuration allows for recording from multiple sites per available channel, with a penalty to signal-to-noise ratio. These probes and algorithms enable stable recordings from >10,000 sites during free behavior in small animals such as mice.
141

Equations governing dynamics of excitation and inhibition in the mouse corticothalamic network

I‐Chun Lin et al.Oct 24, 2023
K
M
M
I
Although cortical circuits are complex and interconnected with the rest of the brain, their macroscopic dynamics are often approximated by modeling the averaged activities of excitatory and inhibitory cortical neurons, without interactions with other brain circuits. To verify the validity of such mean-field models, we optogenetically stimulated populations of excitatory and parvalbumin-expressing inhibitory neurons in awake mouse visual cortex, while recording population activity in cortex and in its thalamic correspondent, the lateral geniculate nucleus. The cortical responses to brief test pulses could not be explained by a mean-field model including only cortical excitatory and inhibitory populations. However, these responses could be predicted by extending the model to include thalamic interactions that cause net cortical suppression following activation of cortical excitatory neurons. We conclude that mean-field models can accurately summarize cortical dynamics, but only when the cortex is considered as part of a dynamic corticothalamic network.
0

Innovative Energy Storage Smart Windows Relying on Mild Aqueous Zn/MnO2 Battery Chemistry

Hamid Kannattil et al.Sep 6, 2024
+2
K
L
H
Abstract Rechargeable mild aqueous Zn/MnO 2 batteries are currently attracting great interest thanks to their appealing performance/cost ratio. Their operating principle relies on two complementary reversible electrodeposition reactions at the anode and cathode. Transposing this operating principle to transparent conductive windows remains an unexplored facet of this battery chemistry, which is proposed here to address with the development of an innovative bifunctional smart window, combining electrochromic and charge storage properties. The proof‐of‐concept of such bifunctional Zn/MnO 2 smart window is provided using a mild buffered aqueous electrolyte and different architectures. To maximize the device's performance, transparent nanostructured ITO cathodes are used to reversibly electrodeposit a high load of MnO 2 (up to 555 mA h m −2 with a CE of 99.5% over 200 cycles, allowing to retrieve an energy density as high as 860 mA h m −2 when coupled with a zinc metal frame), while flat transparent FTO anodes are used to reversibly electrodeposit an homogenous coating of zinc metal (up to ≈280 mA h m −2 with a CE > 95% over 50 cycles). The implementation of these two reversible electrodeposition processes in a single smart window has been successfully achieved, leading for the first time to a dual‐tinting energy storage smart window with an optimized face‐to‐face architecture.
0
Citation2
0
Save
0

Lightning Pose: improved animal pose estimation via semi-supervised learning, Bayesian ensembling and cloud-native open-source tools

Dan Biderman et al.Sep 6, 2024
+122
C
M
D
0

Molecular architecture of the mouse nervous system

Amit Zeisel et al.May 6, 2020
+16
P
H
A
The mammalian nervous system executes complex behaviors controlled by specialised, precisely positioned and interacting cell types. Here, we used RNA sequencing of half a million single cells to create a detailed census of cell types in the mouse nervous system. We mapped cell types spatially and derived a hierarchical, data-driven taxonomy. Neurons were the most diverse, and were grouped by developmental anatomical units, and by the expression of neurotransmitters and neuropeptides. Neuronal diversity was driven by genes encoding cell identity, synaptic connectivity, neurotransmission and membrane conductance. We discovered several distinct, regionally restricted, astrocytes types, which obeyed developmental boundaries and correlated with the spatial distribution of key glutamate and glycine neurotransmitters. In contrast, oligodendrocytes showed a loss of regional identity, followed by a secondary diversi cation. The resource presented here lays a solid foundation for understanding the molecular architecture of the mammalian nervous system, and enables genetic manipulation of specific cell types.
0

Community-based benchmarking improves spike rate inference from two-photon calcium imaging data

Philipp Berens et al.May 6, 2020
+26
T
J
P
In recent years, two-photon calcium imaging has become a standard tool to probe the function of neural circuits and to study computations in neuronal populations. However, the acquired signal is only an indirect measurement of neural activity due to the comparatively slow dynamics of fluorescent calcium indicators. Different algorithms for estimating spike trains from noisy calcium measurements have been proposed in the past, but it is an open question how far performance can be improved. Here, we report the results of the spikefinder challenge, launched to catalyze the development of new spike inference algorithms through crowd-sourcing. We present ten of the submitted algorithms which show improved performance compared to previously evaluated methods. Interestingly, the top-performing algorithms are based on a wide range of principles from deep neural networks to generative models, yet provide highly correlated estimates of the neural activity. The competition shows that benchmark challenges can drive algorithmic developments in neuroscience.
0

Spike sorting for large, dense electrode arrays

Cyrille Rossant et al.May 6, 2020
+4
D
S
C
Developments in microfabrication technology have enabled the production of neural electrode arrays with hundreds of closely-spaced recording sites, and electrodes with thousands of sites are currently under development. These probes will in principle allow the simultaneous recording of very large numbers of neurons. However, use of this technology requires the development of techniques for decoding the spike times of the recorded neurons, from the raw data captured from the probes. There currently exists no practical solution to this problem of “spike sorting” for large, dense electrode arrays. Here, we present a set of novel tools to solve this problem, implemented in a suite of practical, user-friendly, open-source software. We validate these methods on data from rat cortex, demonstrating error rates as low as 5%.
5

Mouse frontal cortex nonlinearly encodes sensory, choice and outcome signals

Lauren Wool et al.Oct 24, 2023
K
M
A
L
Abstract Frontal area MOs (secondary motor area) is a key brain structure in rodents for making decisions based on sensory evidence and on reward value. In behavioral tasks, its neurons can encode sensory stimuli, upcoming choices, expected rewards, ongoing actions, and recent outcomes. However, the information encoded, and the nature of the resulting code, may depend on the task being performed. We recorded MOs population activity using two-photon calcium imaging, in a task requiring mice to integrate sensory evidence with reward value. Mice turned a wheel to report the location of a visual stimulus following a delay period, to receive a reward whose size varied over trial blocks. MOs neurons encoded multiple task variables, but not all of those seen in other tasks. In the delay period, the MOs population strongly encoded the stimulus side but did not significantly encode the reward-size block. A correlation of MOs activity with upcoming choice could be explained by a common effect of stimulus on those two correlates. After the wheel turn and the feedback, the MOs population encoded choice side and choice outcome jointly and nonlinearly according to an exclusive-or (XOR) operation. This nonlinear operation would allow a downstream linear decoder to infer the correct choice side (i.e., the side that would have been rewarded) even on zero contrast trials, when there had been no visible stimulus. These results indicate that MOs neurons flexibly encode some but not all variables that determine behavior, depending on task. Moreover, they reveal that MOs activity can reflect a nonlinear combination of these behavioral variables, allowing simple linear inference of task events that would not have been directly observable.
0

Suite2p: beyond 10,000 neurons with standard two-photon microscopy

Marius Pachitariu et al.May 6, 2020
+5
M
C
M
Two-photon microscopy of calcium-dependent sensors has enabled unprecedented recordings from vast populations of neurons. While the sensors and microscopes have matured over several generations of development, computational methods to process the resulting movies remain inefficient and can give results that are hard to interpret. Here we introduce Suite2p: a fast, accurate and complete pipeline that registers raw movies, detects active cells, extracts their calcium traces and infers their spike times. Suite2p runs on standard workstations, operates faster than real time, and recovers ~2 times more cells than the previous state-of-the-art method. Its low computational load allows routine detection of ~10,000 cells simultaneously with standard two-photon resonant-scanning microscopes. Recordings at this scale promise to reveal the fine structure of activity in large populations of neurons or large populations of subcellular structures such as synaptic boutons.
Load More