LL
Leslie Lange
Author with expertise in Genomic Studies and Association Analyses
University of Colorado Anschutz Medical Campus, University of Colorado Denver, Colorado School of Public Health
+ 7 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
22
(55% Open Access)
Cited by:
50
h-index:
78
/
i10-index:
253
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Inherited Causes of Clonal Hematopoiesis of Indeterminate Potential in TOPMed Whole Genomes

Alexander Bick et al.May 6, 2020
+120
S
J
A
ABSTRACT Age is the dominant risk factor for most chronic human diseases; yet the mechanisms by which aging confers this risk are largely unknown. 1 Recently, the age-related acquisition of somatic mutations in regenerating hematopoietic stem cell populations was associated with both hematologic cancer incidence 2–4 and coronary heart disease prevalence. 5 Somatic mutations with leukemogenic potential may confer selective cellular advantages leading to clonal expansion, a phenomenon termed ‘Clonal Hematopoiesis of Indeterminate Potential’ (CHIP). 6 Simultaneous germline and somatic whole genome sequence analysis now provides the opportunity to identify root causes of CHIP. Here, we analyze high-coverage whole genome sequences from 97,691 participants of diverse ancestries in the NHLBI TOPMed program and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid, and inflammatory traits specific to different CHIP genes. Association of a genome-wide set of germline genetic variants identified three genetic loci associated with CHIP status, including one locus at TET2 that was African ancestry specific. In silico -informed in vitro evaluation of the TET2 germline locus identified a causal variant that disrupts a TET2 distal enhancer. Aggregates of rare germline loss-of-function variants in CHEK2 , a DNA damage repair gene, predisposed to CHIP acquisition. Overall, we observe that germline genetic variation altering hematopoietic stem cell function and the fidelity of DNA-damage repair increase the likelihood of somatic mutations leading to CHIP.
0
Citation22
0
Save
3

A Saturated Map of Common Genetic Variants Associated with Human Height from 5.4 Million Individuals of Diverse Ancestries

Loïc Yengo et al.Jan 12, 2022
+554
E
S
L
ABSTRACT Common SNPs are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes. Here we show, using GWAS data from 5.4 million individuals of diverse ancestries, that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a median size of ~90 kb, covering ~21% of the genome. The density of independent associations varies across the genome and the regions of elevated density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs account for 40% of phenotypic variance in European ancestry populations but only ~10%-20% in other ancestries. Effect sizes, associated regions, and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely explained by linkage disequilibrium and allele frequency differences within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than needed to implicate causal genes and variants. Overall, this study, the largest GWAS to date, provides an unprecedented saturated map of specific genomic regions containing the vast majority of common height-associated variants.
0

The Trans-Ancestral Genomic Architecture of Glycaemic Traits

Ji Chen et al.May 30, 2024
+405
G
C
J
Abstract Glycaemic traits are used to diagnose and monitor type 2 diabetes, and cardiometabolic health. To date, most genetic studies of glycaemic traits have focused on individuals of European ancestry. Here, we aggregated genome-wide association studies in up to 281,416 individuals without diabetes (30% non-European ancestry) with fasting glucose, 2h-glucose post-challenge, glycated haemoglobin, and fasting insulin data. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P <5×10 -8 ), 80% with no significant evidence of between-ancestry heterogeneity. Analyses restricted to European ancestry individuals with equivalent sample size would have led to 24 fewer new loci. Compared to single-ancestry, equivalent sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase understanding of diabetes pathophysiology by use of trans-ancestry studies for improved power and resolution.
1

Rare coding variants in 35 genes associate with circulating lipid levels – a multi-ancestry analysis of 170,000 exomes

George Hindy et al.Dec 24, 2020
+179
M
P
G
Abstract Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency<1%) predicted damaging coding variation using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels. Ten of these: ALB , SRSF2 , JAK2, CREB3L3 , TMEM136 , VARS , NR1H3 , PLA2G12A , PPARG and STAB1 have not been implicated for lipid levels using rare coding variation in population-based samples. We prioritize 32 genes identified in array-based genome-wide association study (GWAS) loci based on gene-based associations, of which three: EVI5, SH2B3 , and PLIN1 , had no prior evidence of rare coding variant associations. Most of the associated genes showed evidence of association in multiple ancestries. Also, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes, and for genes closest to GWAS index single nucleotide polymorphisms (SNP). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.
50

Whole genome sequence analysis of blood lipid levels in >66,000 individuals

Margaret Selvaraj et al.Oct 24, 2023
+82
Z
X
M
Abstract Plasma lipids are heritable modifiable causal factors for coronary artery disease, the leading cause of death globally. Despite the well-described monogenic and polygenic bases of dyslipidemia, limitations remain in discovery of lipid-associated alleles using whole genome sequencing, partly due to limited sample sizes, ancestral diversity, and interpretation of potential clinical significance. Increasingly larger whole genome sequence datasets with plasma lipids coupled with methodologic advances enable us to more fully catalog the allelic spectrum for lipids. Here, among 66,329 ancestrally diverse (56% non-European ancestry) participants, we associate 428M variants from deep-coverage whole genome sequences with plasma lipids. Approximately 400M of these variants were not studied in prior lipids genetic analyses. We find multiple lipid-related genes strongly associated with plasma lipids through analysis of common and rare coding variants. We additionally discover several significantly associated rare non-coding variants largely at Mendelian lipid genes. Notably, we detect rare LDLR intronic variants associated with markedly increased LDL-C, similar to rare LDLR exonic variants. In conclusion, we conducted a systematic whole genome scan for plasma lipids expanding the alleles linked to lipids for multiple ancestries and characterize a clinically-relevant rare non-coding variant model for lipids.
50
Paper
Citation2
0
Save
14

A framework for detecting noncoding rare variant associations of large-scale whole-genome sequencing studies

Zilin Li et al.Oct 24, 2023
+58
H
X
Z
Abstract Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare variants’ (RVs) associations with complex human traits. Variant set analysis is a powerful approach to study RV association, and a key component of it is constructing RV sets for analysis. However, existing methods have limited ability to define analysis units in the noncoding genome. Furthermore, there is a lack of robust pipelines for comprehensive and scalable noncoding RV association analysis. Here we propose a computationally-efficient noncoding RV association-detection framework that uses STAAR (variant-set test for association using annotation information) to group noncoding variants in gene-centric analysis based on functional categories. We also propose SCANG (scan the genome)-STAAR, which uses dynamic window sizes and incorporates multiple functional annotations, in a non-gene-centric analysis. We furthermore develop STAARpipeline to perform flexible noncoding RV association analysis, including gene-centric analysis as well as fixed-window-based and dynamic-window-based non-gene-centric analysis. We apply STAARpipeline to identify noncoding RV sets associated with four quantitative lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several noncoding RV associations in an additional 9,123 TOPMed samples.
8

Protein prediction for trait mapping in diverse populations

Ryan Schubert et al.Oct 24, 2023
+29
I
E
R
Abstract Genetically regulated gene expression has helped elucidate the biological mechanisms underlying complex traits. Improved high-throughput technology allows similar interrogation of the genetically regulated proteome for understanding complex trait mechanisms. Here, we used the Trans-omics for Precision Medicine (TOPMed) Multi-omics pilot study, which comprises data from Multi-Ethnic Study of Atherosclerosis (MESA), to optimize genetic predictors of the plasma proteome for genetically regulated proteome-wide association studies (PWAS) in diverse populations. We built predictive models for protein abundances using data collected in TOPMed MESA, for which we have measured 1,305 proteins by a SOMAscan assay. We compared predictive models built via elastic net regression to models integrating posterior inclusion probabilities estimated by fine-mapping SNPs prior to elastic net. In order to investigate the transferability of predictive models across ancestries, we built protein prediction models in all four of the TOPMed MESA populations, African American (n=183), Chinese (n=71), European (n=416), and Hispanic/Latino (n=301), as well as in all populations combined. As expected, fine-mapping produced more significant protein prediction models, especially in African ancestries populations, potentially increasing opportunity for discovery. When we tested our TOPMed MESA models in the independent European INTERVAL study, fine-mapping improved cross-ancestries prediction for some proteins. Using GWAS summary statistics from the Population Architecture using Genomics and Epidemiology (PAGE) study, which comprises ~50,000 Hispanic/Latinos, African Americans, Asians, Native Hawaiians, and Native Americans, we applied S-PrediXcan to perform PWAS for 28 complex traits. The most protein-trait associations were discovered, colocalized, and replicated in large independent GWAS using proteome prediction model training populations with similar ancestries to PAGE. At current training population sample sizes, performance between baseline and fine-mapped protein prediction models in PWAS was similar, highlighting the utility of elastic net. Our predictive models in diverse populations are publicly available for use in proteome mapping methods at https://doi.org/10.5281/zenodo.4837328 . Author summary Gene regulation is a critical mechanism underlying complex traits. Transcriptome-wide association studies (TWAS) have helped elucidate potential mechanisms because each association connects a gene rather than a variant to the complex trait. Like genome-wide association studies (GWAS), most TWAS are still conducted exclusively in populations of European ancestry, which misses the opportunity to test the full spectrum of human genetic variation for associations with complex traits. Here, move beyond the transcriptome and because protein measurement assays are growing to allow interrogation of the proteome, we use data from TOPMed MESA to develop genetic predictors of protein abundance in diverse ancestry populations. We compare model-building strategies with the goal of providing the best resource for protein association discovery with available data. We demonstrate how these prediction models can be used to perform proteome-wide association studies (PWAS) in diverse populations. We show the most protein-trait associations were discovered, colocalized, and replicated in independent cohorts using proteome prediction model training populations with similar ancestries to individuals in the GWAS. We shared our protein prediction models and performance statistics publicly to facilitate future proteome mapping studies in diverse populations.
8
Paper
Citation1
0
Save
57

A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids

Shweta Ramdas et al.Oct 24, 2023
+532
S
J
S
Abstract A major challenge of genome-wide association studies (GWAS) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations, and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels, and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. Two prioritized genes, CREBRF and RRBP1 , show convergent evidence across functional datasets supporting their roles in lipid biology.
0

PROTEIN-CODING VARIANTS IMPLICATE NOVEL GENES RELATED TO LIPID HOMEOSTASIS CONTRIBUTING TO BODY FAT DISTRIBUTION

Anne Justice et al.May 6, 2020
+276
H
T
A
Body fat distribution is a heritable risk factor for a range of adverse health consequences, including hyperlipidemia and type 2 diabetes. To identify protein-coding variants associated with body fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, we analyzed 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries for discovery and 132,177 independent European-ancestry individuals for validation. We identified 15 common (minor allele frequency, MAF ≥ 5%) and 9 low frequency or rare (MAF < 5%) coding variants that have not been reported previously. Pathway/gene set enrichment analyses of all associated variants highlight lipid particle, adiponectin level, abnormal white adipose tissue physiology, and bone development and morphology as processes affecting fat distribution and body shape. Furthermore, the cross-trait associations and the analyses of variant and gene function highlight a strong connection to lipids, cardiovascular traits, and type 2 diabetes. In functional follow-up analyses, specifically in Drosophila RNAi-knockdown crosses, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). By examining variants often poorly tagged or entirely missed by genome-wide association studies, we implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
1

Human Plasma Proteomic Profile of Clonal Hematopoiesis

Zhi Yu et al.Oct 24, 2023
+42
N
A
Z
Abstract Plasma proteomic profiles associated with subclinical somatic mutations in blood cells may offer novel insights in downstream clinical consequences. Here, we explore such patterns in clonal hematopoiesis of indeterminate potential (CHIP), which links to several cancer and non-cancer outcomes, including coronary artery disease. Among 12,911 ancestrally diverse participants (682 with CHIP) from NHLBI TOPMed with blood-based DNA sequencing and 1,148 common proteins measured by SomaScan, we identified 32 unique proteins associated with the most prevalent driver genes ( DNMT3A , TET2 , and ASXL1 ) after multiple testing corrections. These associations showed substantial heterogeneity by driver genes, sex, and race, were enriched for immune response and inflammation pathways, and were moderately replicated in UK Biobank (N=48,922) that used Olink for proteomics measurement. Murine single-cell RNA-sequencing data from aortic arch cells, inclusive of resident hematologic cells, in mice with Tet2 -/- bone marrow and wild-type mice revealed corroborating differential expression of TET2 -associated protein-encoding genes. Lastly, we apply these observations to identify 68 plasma proteins shared between CHIP and coronary artery disease.
Load More