HK
Hyun Kang
Author with expertise in Genomic Studies and Association Analyses
University of Michigan–Ann Arbor, Statistical Research (United States), Regeneron (United States)
+ 8 more
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
36
(42% Open Access)
Cited by:
370
h-index:
77
/
i10-index:
156
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Single-Cell RNA Sequencing Resolves Molecular Relationships Among Individual Plant Cells

Kook Ryu et al.Nov 25, 2023
P
H
L
K
Single-cell RNA sequencing (scRNA-seq) has been used extensively to study cell-specific gene expression in animals, but it has not been widely applied to plants. Here, we describe the use of a commercially available droplet-based microfluidics platform for high-throughput scRNA-seq to obtain single-cell transcriptomes from protoplasts of more than 10,000 Arabidopsis (Arabidopsis thaliana) root cells. We find that all major tissues and developmental stages are represented in this single-cell transcriptome population. Further, distinct subpopulations and rare cell types, including putative quiescent center cells, were identified. A focused analysis of root epidermal cell transcriptomes defined developmental trajectories for individual cells progressing from meristematic through mature stages of root-hair and nonhair cell differentiation. In addition, single-cell transcriptomes were obtained from root epidermis mutants, enabling a comparative analysis of gene expression at single-cell resolution and providing an unprecedented view of the impact of the mutated genes. Overall, this study demonstrates the feasibility and utility of scRNA-seq in plants and provides a first-generation gene expression map of the Arabidopsis root at single-cell resolution.
1
Paper
Citation354
0
Save
1

Clonal hematopoiesis is driven by aberrant activation of TCL1A

Joshua Weinstock et al.Oct 24, 2023
+103
B
J
J
Abstract A diverse set of driver genes, such as regulators of DNA methylation, RNA splicing, and chromatin remodeling, have been associated with pre-malignant clonal expansion of hematopoietic stem cells (HSCs). The factors mediating expansion of these mutant clones remain largely unknown, partially due to a paucity of large cohorts with longitudinal blood sampling. To circumvent this limitation, we developed and validated a method to infer clonal expansion rate from single timepoint data called PACER (passenger-approximated clonal expansion rate). Applying PACER to 5,071 persons with clonal hematopoiesis accurately recapitulated the known fitness effects due to different driver mutations. A genome-wide association study of PACER revealed that a common inherited polymorphism in the TCL1A promoter was associated with slower clonal expansion. Those carrying two copies of this protective allele had up to 80% reduced odds of having driver mutations in TET2, ASXL1, SF3B1, SRSF2 , and JAK2 , but not DNMT3A. TCL1A was not expressed in normal or DNMT3A -mutated HSCs, but the introduction of mutations in TET2 or ASXL1 by CRISPR editing led to aberrant expression of TCL1A and expansion of HSCs in vitro. These effects were abrogated in HSCs from donors carrying the protective TCL1A allele. Our results indicate that the fitness advantage of multiple common driver genes in clonal hematopoiesis is mediated through TCL1A activation. PACER is an approach that can be widely applied to uncover genetic and environmental determinants of pre-malignant clonal expansion in blood and other tissues.
1
Paper
Citation8
0
Save
1

Rare coding variants in 35 genes associate with circulating lipid levels – a multi-ancestry analysis of 170,000 exomes

George Hindy et al.Dec 24, 2020
+179
M
P
G
Abstract Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency<1%) predicted damaging coding variation using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels. Ten of these: ALB , SRSF2 , JAK2, CREB3L3 , TMEM136 , VARS , NR1H3 , PLA2G12A , PPARG and STAB1 have not been implicated for lipid levels using rare coding variation in population-based samples. We prioritize 32 genes identified in array-based genome-wide association study (GWAS) loci based on gene-based associations, of which three: EVI5, SH2B3 , and PLIN1 , had no prior evidence of rare coding variant associations. Most of the associated genes showed evidence of association in multiple ancestries. Also, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes, and for genes closest to GWAS index single nucleotide polymorphisms (SNP). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.
0

Genome-wide association study of diabetic kidney disease highlights biology involved in renal basement membrane collagen

Rany Salem et al.May 7, 2020
+85
N
J
R
Diabetic kidney disease (DKD) is a heritable but poorly understood complication of diabetes. To identify genetic variants predisposing to DKD, we performed genome-wide association analyses in 19,406 individuals with type 1 diabetes (T1D) using a spectrum of DKD definitions basedon albuminuria and renal function. We identified 16 genome-wide significant loci. The variant with the strongest association (rs55703767) is a common missense mutation in the collagen type IV alpha 3 chain (COL4A3) gene, which encodes a major structural component of the glomerular basement membrane (GBM) implicated in heritable nephropathies. The rs55703767 minor allele (Asp326Tyr) is protective against several definitions of DKD, including albuminuria and end-stage renal disease. Three other loci are in or near genes with known or suggestive involvement in DKD (BMP7) or renal biology ( COLEC11 and DDR1 ). The 16 DKD-associated loci provide novel insights into the pathogenesis of DKD, identifying potential biological targets for prevention and treatment.
0
Citation3
0
Save
27

Joint testing of rare variant burden scores using non-negative least squares

Andrey Ziyatdinov et al.Oct 24, 2023
+16
A
J
A
Abstract Gene-based burden tests are a popular and powerful approach for analysis of exome-wide association studies. These approaches combine sets of variants within a gene into a single burden score that is then tested for association. Typically, a range of burden scores are calculated and tested across a range of annotation classes and frequency bins. Correlation between these tests can complicate the multiple testing correction and hamper interpretation of the results. We introduce a new method called the Sparse Burden Association Test (SBAT) that tests the joint set of burden scores under the assumption that causal burden scores act in the same effect direction. The method simultaneously assesses the significance of the model fit and selects the set of burden scores that best explain the association at the same time. Using simulated data, we show that the method is well calibrated and highlight some scenarios where the test outperforms existing gene-based tests. We apply the method to 73 quantitative traits from the UK Biobank which further illustrates the power of the method. This test is implemented in the REGENIE software.
27
Paper
Citation1
0
Save
0

A reference panel of 64,976 haplotypes for genotype imputation

Shane McCarthy et al.May 6, 2020
+107
W
D
S
We describe a reference panel of 64,976 human haplotypes at 39,235,157 SNPs constructed using whole genome sequence data from 20 studies of predominantly European ancestry. Using this resource leads to accurate genotype imputation at minor allele frequencies as low as 0.1%, a large increase in the number of SNPs tested in association studies and can help to discover and refine causal loci. We describe remote server resources that allow researchers to carry out imputation and phasing consistently and efficiently.
0

High-Resolution Spatial Transcriptomic Atlas of Mouse Soleus Muscle: Unveiling Single Cell and Subcellular Heterogeneity in Health and Denervation

Jer-En Hsu et al.May 27, 2024
+11
Y
L
J
Abstract Skeletal muscle is essential for both movement and metabolic processes, characterized by a complex and ordered structure. Despite its importance, a detailed spatial map of gene expression within muscle tissue has been challenging to achieve due to the limitations of existing technologies, which struggle to provide high-resolution views. In this study, we leverage the Seq-Scope technique, an innovative method that allows for the observation of the entire transcriptome at an unprecedented submicron spatial resolution. By applying this technique to the mouse soleus muscle, we analyze and compare the gene expression profiles in both healthy conditions and following denervation, a process that mimics aspects of muscle aging. Our approach reveals detailed characteristics of muscle fibers, other cell types present within the muscle, and specific subcellular structures such as the postsynaptic nuclei at neuromuscular junctions, hybrid muscle fibers, and areas of localized expression of genes responsive to muscle injury, along with their histological context. The findings of this research significantly enhance our understanding of the diversity within the muscle cell transcriptome and its variation in response to denervation, a key factor in the decline of muscle function with age. This breakthrough in spatial transcriptomics not only deepens our knowledge of muscle biology but also sets the stage for the development of new therapeutic strategies aimed at mitigating the effects of aging on muscle health, thereby offering a more comprehensive insight into the mechanisms of muscle maintenance and degeneration in the context of aging and disease.
0

Seq-Scope Protocol: Repurposing Illumina Sequencing Flow Cells for High-Resolution Spatial Transcriptomics

Yongsung Kim et al.May 28, 2024
+13
C
W
Y
ABSTRACT Spatial transcriptomics (ST) technologies represent a significant advance in gene expression studies, aiming to profile the entire transcriptome from a single histological slide. These techniques are designed to overcome the constraints faced by traditional methods such as immunostaining and RNA in situ hybridization, which are capable of analyzing only a few target genes simultaneously. However, the application of ST in histopathological analysis is also limited by several factors, including low resolution, a limited range of genes, scalability issues, high cost, and the need for sophisticated equipment and complex methodologies. Seq-Scope—a recently developed novel technology—repurposes the Illumina sequencing platform for high-resolution, high-content spatial transcriptome analysis, thereby overcoming these limitations. Here we provide a detailed step-by-step protocol to implement Seq-Scope with an Illumina NovaSeq 6000 sequencing flow cell that allows for the profiling of multiple tissue sections in an area of 7 mm × 7 mm or larger. In addition to detailing how to prepare a frozen tissue section for both histological imaging and sequencing library preparation, we provide comprehensive instructions and a streamlined computational pipeline to integrate histological and transcriptomic data for high-resolution spatial analysis. This includes the use of conventional software tools for single cell and spatial analysis, as well as our recently developed segmentation-free method for analyzing spatial data at submicrometer resolution. Given its adaptability across various biological tissues, Seq-Scope establishes itself as an invaluable tool for researchers in molecular biology and histology. KEY POINTS The protocol outlines a method for repurposing an Illumina NovaSeq 6000 flow cell as a spatial transcriptomics array, enabling the generation of high-resolution spatial datasets. The protocol introduces a streamlined data analysis pipeline that produces a spatial digital gene expression matrix suitable for various single-cell and spatial transcriptome analysis methods. The protocol allows for the capture of histology images from the same tissue section subjected to spatial transcriptomics analysis and allows users to precisely align the transcriptome dataset with the histological image using fiducial marks engraved on the flow cell surface. Leveraging commonly available Illumina equipment, the protocol offers researchers ultra-high submicrometer resolution in spatial transcriptomics analysis with a comprehensive pipeline, rapid turnaround, cost efficiency, and versatility.
0

Extremely rare variants reveal patterns of germline mutation rate heterogeneity in humans

Jedidiah Carlson et al.May 6, 2020
+8
M
A
J
A detailed understanding of the genome-wide variability of single-nucleotide germline mutation rates is essential to studying human genome evolution. Here we use ~36 million singleton variants from 3,560 whole-genome sequences to infer fine-scale patterns of mutation rate heterogeneity. Mutability is jointly affected by adjacent nucleotide context and diverse genomic features of the surrounding region, including histone modifications, replication timing, and recombination rate, sometimes suggesting specific mutagenic mechanisms. Remarkably, GC content, DNase hypersensitivity, CpG islands, and H3K36 trimethylation are associated with both increased and decreased mutation rates depending on nucleotide context. We validate these estimated effects in an independent dataset of ~46,000 de novo mutations, and confirm our estimates are more accurate than previously published estimates based on ancestrally older variants without considering genomic features. Our results thus provide the most refined portrait to date of the factors contributing to genome-wide variability of the human germline mutation rate.
0

Genome-wide association study of 1 million people identifies 111 loci for atrial fibrillation

Nielsen Jb et al.May 6, 2020
+43
L
R
N
To understand the genetic variation underlying atrial fibrillation (AF), the most common cardiac arrhythmia, we performed a genome-wide association study (GWAS) of > 1 million people, including 60,620 AF cases and 970,216 controls. We identified 163 independent risk variants at 111 loci and prioritized 165 candidate genes likely to be involved in AF. Many of the identified risk variants fall near genes where more deleterious mutations have been reported to cause serious heart defects in humans or mice (MYH6, NKX2-5, PITX2, TBC1D32, TBX5), or near genes important for striated muscle function and integrity (e.g. MYH7, PKP2, SSPN, SGCA). Experiments in rabbits with heart failure and left atrial dilation identified a heterogeneous distributed molecular switch from MYH6 to MYH7 in the left atrium, which resulted in contractile and functional heterogeneity and may predispose to initiation and maintenance of atrial arrhythmia.
Load More