RK
Robert Knight
Author with expertise in Neuronal Oscillations in Cortical Networks
University of California, Berkeley, Neurosciences Institute, Neurological Surgery
+ 12 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
56
(59% Open Access)
Cited by:
1,086
h-index:
110
/
i10-index:
344
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
12

Parameterizing neural power spectra into periodic and aperiodic components

Thomas Donoghue et al.Dec 21, 2020
+9
E
M
T
Electrophysiological signals exhibit both periodic and aperiodic properties. Periodic oscillations have been linked to numerous physiological, cognitive, behavioral and disease states. Emerging evidence demonstrates that the aperiodic component has putative physiological interpretations and that it dynamically changes with age, task demands and cognitive states. Electrophysiological neural activity is typically analyzed using canonically defined frequency bands, without consideration of the aperiodic (1/f-like) component. We show that standard analytic approaches can conflate periodic parameters (center frequency, power, bandwidth) with aperiodic ones (offset, exponent), compromising physiological interpretations. To overcome these limitations, we introduce an algorithm to parameterize neural power spectra as a combination of an aperiodic component and putative periodic oscillatory peaks. This algorithm requires no a priori specification of frequency bands. We validate this algorithm on simulated data, and demonstrate how it can be used in applications ranging from analyzing age-related changes in working memory to large-scale data exploration and analysis.
0

Slow oscillation-spindle coupling predicts sequence-based language learning

Zachariah Cross et al.May 7, 2020
+7
A
R
Z
Abstract Sentence comprehension involves the rapid decoding of semantic and grammatical information, a process fundamental to communication. As with other cognitive processes, language comprehension relies partly on long-term memory. However, the electrophysiological mechanisms underpinning the initial encoding and generalisation of higher-order linguistic knowledge remains elusive, particularly from a sleep-based consolidation perspective. One candidate mechanism that may subserve the consolidation of language is the temporal coordination of slow oscillations (SO) and sleep spindles during non-rapid eye movement sleep (NREM). To examine this hypothesis, we analysed electroencephalographic (EEG) data recorded from 35 participants (M age = 25.4, SD = 7.10; 16 males) during an artificial language learning task, contrasting performance between individuals who were given an 8hr nocturnal sleep period or an equivelant period of wake. We found that sleep relative to wake was associated with superior performance for rules that followed a sequence-based word order. Post-sleep sequence-based word order processing was associated with an increase in task-related theta power, an electrophysiological signature of successful memory consolidation. Frontal NREM SO-spindle coupling was also positively associated with behavioural sensitivity to sequence-based word order rules, as well as with task-related theta power. As such, theta activity during retrieval of previously learned information correlates with SO-spindle coupling, thus linking neural activity in the sleeping and waking brain. Taken together, this study presents converging behavioural and neurophysiological evidence for a role of NREM SO-spindle coupling and task-related theta activity as signatures of successful memory consolidation and retrieval in the context of higher-order language learning. SIGNIFICANCE STATEMENT The endogenous temporal coordination of neural oscillations supports information processing during both wake and sleep states. Here we demonstrate that slow oscillation-spindle coupling during non-rapid eye movement sleep predicts the consolidation of complex grammatical rules and modulates task-related oscillatory dynamics previously implicated in sentence processing. We show that increases in theta power predict enhanced sensitivity to grammatical violations after a period of sleep and strong slow oscillation-spindle coupling modulates subsequent task-related theta activity to influence behaviour. Our findings reveal a complex interaction between both wake- and sleep-related oscillatory dynamics during the early stages of language learning beyond the single word level.
1

Imagined speech can be decoded from low- and cross-frequency features in perceptual space

Timothée Proix et al.Oct 24, 2023
+10
A
J
T
Summary Reconstructing intended speech from neural activity using brain-computer interfaces (BCIs) holds great promises for people with severe speech production deficits. While decoding overt speech has progressed, decoding imagined speech have met limited success, mainly because the associated neural signals are weak and variable hence difficult to decode by learning algorithms. Using three electrocorticography datasets totalizing 1444 electrodes from 13 patients who performed overt and imagined speech production tasks, and based on recent theories of speech neural processing, we extracted consistent and specific neural features usable for future BCIs, and assessed their performance to discriminate speech items in articulatory, phonetic, vocalic, and semantic representation spaces. While high-frequency activity provided the best signal for overt speech, both low- and higher-frequency power and local cross-frequency contributed to successful imagined speech decoding, in particular in phonetic and vocalic, i.e. perceptual, spaces. These findings demonstrate that low-frequency power and cross-frequency dynamics contain key information for imagined speech decoding, and that exploring perceptual spaces offers a promising avenue for future imagined speech BCIs.
25

Awake ripples enhance emotional memory encoding in the human brain

Haoxin Zhang et al.Oct 24, 2023
+4
S
I
H
Abstract Intracranial recordings from the human amygdala and the hippocampus during an emotional memory encoding and discrimination task reveal increased awake sharp-wave/ripples (aSWR) after encoding of emotional compared to neutral stimuli. Further, post-encoding aSWR-locked memory reinstatement in the amygdala and the hippocampus was predictive of later memory discrimination. These findings provide electrophysiological evidence that post-encoding aSWRs enhance memory for emotional events.
21

Direct brain recordings reveal continuous encoding of structure in random stimuli

Julian Fuhrer et al.Oct 24, 2023
+8
J
K
J
Abstract The brain excels at processing sensory input, even in rich or chaotic environments. Mounting evidence attributes this to the creation of sophisticated internal models of the environment that draw on statistical structures in the unfolding sensory input. Understanding how and where this modeling takes place is a core question in statistical learning and predictive processing. In this context, we address the role of transitional probabilities as an implicit structure supporting the encoding of a random auditory stream. Leveraging information-theoretical principles and the high spatiotemporal resolution of intracranial electroencephalography, we analyzed the trial-by-trial high-frequency activity representation of transitional probabilities. This unique approach enabled us to demonstrate how the brain continuously encodes structure in random stimuli and revealed the involvement of a network outside of the auditory system, including hippocampal, frontal, and temporal regions. Linking the frame-works of statistical learning and predictive processing, our work illuminates an implicit process that can be crucial for the swift detection of patterns and unexpected events in the environment.
44

Human REM sleep controls neural excitability in support of memory formation

Janna Lendner et al.Oct 24, 2023
+5
S
B
J
Abstract Sleep oscillations provide a key substrate to facilitate memory processing, the underlying mechanism of which may involve the overnight homeostatic regulation of plasticity at a synaptic and whole-network level. However, there remains a lack of human data demonstrating if and how sleep enhances memory consolidation and associated neural homeostasis. We combined intracranial recordings and scalp electroencephalography (EEG) in humans to reveal a new role for rapid eye movement (REM) sleep in promoting the homeostatic recalibration of optimal excitation/inhibition-balance. Moreover, the extent of this REM-sleep homeostatic recalibration predicted the success of overnight memory consolidation, expressly the modulation of hippocampal— neocortical excitability favoring remembering rather than forgetting. The findings describe a novel, fundamental role of human REM sleep in maintaining neural homeostasis, thereby enhancing long-term memory.
17

Consciousness is supported by near-critical cortical electrodynamics

Daniel Toker et al.Oct 24, 2023
+10
J
I
D
Mounting evidence suggests that during conscious states, the electrodynamics of the cortex are poised near a critical point or phase transition, and that this near-critical behavior supports the vast flow of information through cortical networks during conscious states. Here, for the first time, we empirically identify the specific critical point near which conscious cortical dynamics operate as the edge-of-chaos critical point, or the boundary between periodicity/stability and chaos/instability. We do so by applying the recently developed modified 0-1 chaos test to electrocorticography (ECoG) and magne-toencephalography (MEG) recordings from the cortices of humans and macaques across normal waking, generalized seizure, GABAergic anesthesia, and psychedelic states. Our evidence suggests that cortical information processing is disrupted during unconscious states because of a transition of cortical dynamics away from this critical point; conversely, we show that psychedelics may increase the information-richness of cortical activity by tuning cortical electrodynamics closer to this critical point. Finally, we analyze clinical electroencephalography (EEG) recordings from patients with disorders of consciousness (DOC), and show that assessing the proximity of cortical electrodynamics to the edge-of-chaos critical point may be clinically useful as a new biomarker of consciousness. Significance Statement What changes in the brain when we lose consciousness? One possibility is that the loss of consciousness corresponds to a transition of the brain’s electric activity away from edge-of-chaos criticality, or the knife’s edge in between stability and chaos. Recent mathematical developments have produced novel tools for testing this hypothesis, which we apply for the first time to cortical recordings from diverse brain states. We show that the electric activity of the cortex is indeed poised near the boundary between stability and chaos during conscious states and transitions away from this boundary during unconsciousness, and that this transition disrupts cortical information processing.
17
Citation3
0
Save
0

Lesion evidence for a critical role of left posterior but not frontal areas in alpha-beta power decreases during context-driven word production

Vitória Piai et al.May 7, 2020
R
J
V
Abstract Different frequency bands in the electroencephalogram are postulated to support distinct language functions. Studies have suggested that alpha-beta power decreases may index word-retrieval processes. In context-driven word retrieval, participants hear lead-in sentences that either constrain the final word (“He locked the door with the”) or not (“She walked in here with the”). The last word is shown as a picture to be named. Previous studies have consistently found alpha-beta power decreases prior to picture onset for constrained relative to unconstrained sentences, localised to the left lateral-temporal and lateral-frontal lobes. However, the relative contribution of temporal versus frontal areas to alpha-beta power decreases is unknown. We recorded the electroencephalogram from patients with stroke lesions encompassing the left-lateral temporal and inferior parietal regions or left-lateral frontal lobe and from matched controls. Individual-participant analyses revealed a behavioural sentence context facilitation effect in all participants, except for in the two patients with extensive lesions to temporal and inferior-parietal lobes. We replicated the alpha-beta power decreases prior to picture onset in all participants, except for in the two same patients with extensive posterior lesions. Thus, whereas posterior lesions eliminated the behavioural and oscillatory context effect, frontal lesions did not. Hierarchical clustering analyses of the patients’ lesion profiles, and behavioural and electrophysiological effects identified P7 and P9 as having a unique combination of lesion distribution and context effects. These results indicate a critical role for the left lateral-temporal and inferior parietal lobes, but not frontal cortex, in generating the alpha-beta power decreases underlying context-driven word production.
5

Encoding and decoding analysis of music perception using intracranial EEG

Ludovic Bellier et al.Oct 24, 2023
+4
D
A
L
Abstract Music perception engages multiple brain regions, however the neural dynamics of this core human experience remains elusive. We applied predictive models to intracranial EEG data from 29 patients listening to a Pink Floyd song. We investigated the relationship between the song spectrogram and the elicited high-frequency activity (70-150Hz), a marker of local neural activity. Encoding models characterized the spectrotemporal receptive fields (STRFs) of each electrode and decoding models estimated the population-level song representation. Both methods confirmed a crucial role of the right superior temporal gyri (STG) in music perception. A component analysis on STRF coefficients highlighted overlapping neural populations tuned to specific musical elements (vocals, lead guitar, rhythm). An ablation analysis on decoding models revealed the presence of unique musical information concentrated in the right STG and more spatially distributed in the left hemisphere. Lastly, we provided the first song reconstruction decoded from human neural activity.
5
Citation3
0
Save
0

A comparison of rapid rule-learning strategies in humans and monkeys

Vishwa Goudar et al.Sep 11, 2024
+11
Y
J
V
Interspecies comparisons are key to deriving an understanding of the behavioral and neural correlates of human cognition from animal models. We perform a detailed comparison of the strategies of female macaque monkeys to male and female humans on a variant of the Wisconsin Card Sorting Test (WCST), a widely studied and applied task that provides a multiattribute measure of cognitive function and depends on the frontal lobe. WCST performance requires the inference of a rule change given ambiguous feedback. We found that well-trained monkeys infer new rules three times more slowly than minimally instructed humans. Input-dependent hidden Markov model–generalized linear models were fit to their choices, revealing hidden states akin to feature-based attention in both species. Decision processes resembled a win–stay, lose–shift strategy with interspecies similarities as well as key differences. Monkeys and humans both test multiple rule hypotheses over a series of rule-search trials and perform inference-like computations to exclude candidate choice options. We quantitatively show that perseveration, random exploration, and poor sensitivity to negative feedback account for the slower task-switching performance in monkeys.
0
Citation2
0
Save
Load More