SF
Susan Fairley
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(100% Open Access)
Cited by:
8,533
h-index:
30
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Analyses of pig genomes provide insight into porcine demography and evolution

M.A.M. Groenen et al.Nov 1, 2012
+98
H
A
M
For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ∼1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model. This study presents the assembly and analysis of the genome sequence of a female domestic Duroc pig and a comparison with the genomes of wild and domestic pigs from Europe and Asia; the results shed light on the evolutionary relationship between European and Asian wild boars. The domestic pig (Sus scrofa) is an important livestock species, its genome shaped by thousands of years of domestication and, latterly, sophisticated breeding practices. A high-quality draft genome sequence for a female domestic Duroc pig is published in this issue of Nature, under the auspices of the Swine Genome Sequencing Consortium. Comparisons of the genomes of wild and domestic pigs shed light on the evolutionary relationship between European and Asian wild boars, and reveal the rapid evolution of genes involved in the immune response and in olfaction. The authors identify many possible disease-causing gene variants, increasing the potential of the pig as a biomedical model, and present a detailed analysis of endogenous porcine retroviruses, knowledge of which is important for the possible use of pigs in xenotransplantation.
0
Citation1,266
0
Save
0

The Ensembl gene annotation system

Bronwen Aken et al.Jan 1, 2016
+21
D
S
B
The Ensembl gene annotation system has been used to annotate over 70 different vertebrate species across a wide range of genome projects. Furthermore, it generates the automatic alignment-based annotation for the human and mouse GENCODE gene sets. The system is based on the alignment of biological sequences, including cDNAs, proteins and RNA-seq reads, to the target genome in order to construct candidate transcript models. Careful assessment and filtering of these candidate transcripts ultimately leads to the final gene set, which is made available on the Ensembl website. Here, we describe the annotation process in detail.Database URL: http://www.ensembl.org/index.html.
0
Citation1,003
0
Save
0

Ensembl 2013

Paul Flicek et al.Nov 30, 2012
+52
M
I
P
The Ensembl project (http://www.ensembl.org) provides genome information for sequenced chordate genomes with a particular focus on human, mouse, zebrafish and rat. Our resources include evidenced-based gene sets for all supported species; large-scale whole genome multiple species alignments across vertebrates and clade-specific alignments for eutherian mammals, primates, birds and fish; variation data resources for 17 species and regulation annotations based on ENCODE and other data sets. Ensembl data are accessible through the genome browser at http://www.ensembl.org and through other tools and programmatic interfaces.
0
Citation843
0
Save
0

Ensembl 2012

Paul Flicek et al.Nov 15, 2011
+52
D
M
P
The Ensembl project (http://www.ensembl.org) provides genome resources for chordate genomes with a particular focus on human genome data as well as data for key model organisms such as mouse, rat and zebrafish. Five additional species were added in the last year including gibbon (Nomascus leucogenys) and Tasmanian devil (Sarcophilus harrisii) bringing the total number of supported species to 61 as of Ensembl release 64 (September 2011). Of these, 55 species appear on the main Ensembl website and six species are provided on the Ensembl preview site (Pre!Ensembl; http://pre.ensembl.org) with preliminary support. The past year has also seen improvements across the project.
0
Citation818
0
Save
0

The genome of a songbird

Wesley Warren et al.Mar 30, 2010
+78
H
D
W
The genome of the zebra finch — a songbird and a model for the study of vertebrate brain, behaviour and evolution — has been sequenced. Its comparison with the chicken genome, the only other bird genome available, shows that genes with neural function and implicated in cognitive processing of song have been rapidly evolving in the finch lineage. The study also shows that vocal communication engages much of the zebra finch brain transcriptome and identifies a potential integrator of microRNA signals linked to vocal communication. The genome of the zebra finch — a songbird and a model for studying the vertebrate brain, behaviour and evolution — has been sequenced. Comparison with the chicken genome, the only other bird genome available, shows that genes that have neural function and are implicated in the cognitive processing of song have been evolving rapidly in the finch lineage. Moreover, vocal communication engages much of the transcriptome of the zebra finch brain. The zebra finch is an important model organism in several fields1,2 with unique relevance to human neuroscience3,4. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken5—the only bird with a sequenced genome until now6. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes7. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.
0
Citation807
0
Save
1

Multi-platform discovery of haplotype-resolved structural variation in human genomes

Mark Chaisson et al.Apr 16, 2019
+94
D
A
M
The incomplete identification of structural variants (SVs) from whole-genome sequencing data limits studies of human genetic diversity and disease association. Here, we apply a suite of long-read, short-read, strand-specific sequencing technologies, optical mapping, and variant discovery algorithms to comprehensively analyze three trios to define the full spectrum of human genetic variation in a haplotype-resolved manner. We identify 818,054 indel variants (<50 bp) and 27,622 SVs (≥50 bp) per genome. We also discover 156 inversions per genome and 58 of the inversions intersect with the critical regions of recurrent microdeletion and microduplication syndromes. Taken together, our SV callsets represent a three to sevenfold increase in SV detection compared to most standard high-throughput sequencing studies, including those from the 1000 Genomes Project. The methods and the dataset presented serve as a gold standard for the scientific community allowing us to make recommendations for maximizing structural variation sensitivity for future genome sequencing studies.
1
Citation777
0
Save
0

Ensembl 2009

Tim Hubbard et al.Nov 25, 2008
+51
S
B
T
The Ensembl project (http://www.ensembl.org) is a comprehensive genome information system featuring an integrated set of genome annotation, databases, and other information for chordate, selected model organism and disease vector genomes. As of release 51 (November 2008), Ensembl fully supports 45 species, and three additional species have preliminary support. New species in the past year include orangutan and six additional low coverage mammalian genomes. Major additions and improvements to Ensembl since our previous report include a major redesign of our website; generation of multiple genome alignments and ancestral sequences using the new Enredo-Pecan-Ortheus pipeline and development of our software infrastructure, particularly to support the Ensembl Genomes project (http://www.ensemblgenomes.org/).
0
Citation662
0
Save
0

Ensembl 2011

Paul Flicek et al.Nov 2, 2010
+48
S
G
P
The Ensembl project ( http://www.ensembl.org ) seeks to enable genomic science by providing high quality, integrated annotation on chordate and selected eukaryotic genomes within a consistent and accessible infrastructure. All supported species include comprehensive, evidence-based gene annotations and a selected set of genomes includes additional data focused on variation, comparative, evolutionary, functional and regulatory annotation. The most advanced resources are provided for key species including human, mouse, rat and zebrafish reflecting the popularity and importance of these species in biomedical research. As of Ensembl release 59 (August 2010), 56 species are supported of which 5 have been added in the past year. Since our previous report, we have substantially improved the presentation and integration of both data of disease relevance and the regulatory state of different cell types.
0
Citation590
0
Save
-1

Haplotype-resolved diverse human genomes and integrated analysis of structural variation

Peter Ebert et al.Feb 25, 2021
+62
Q
P
P
Resolving genomic structural variation Many human genomes have been reported using short-read technology, but it is difficult to resolve structural variants (SVs) using these data. These genomes thus lack comprehensive comparisons among individuals and populations. Ebert et al. used long-read structural variation calling across 64 human genomes representing diverse populations and developed new methods for variant discovery. This approach allowed the authors to increase the number of confirmed SVs and to describe the patterns of variation across populations. From this dataset, they identified quantitative trait loci affected by these SVs and determined how they may affect gene expression and potentially explain genome-wide association study hits. This information provides insights into patterns of normal human genetic variation and generates reference genomes that better represent the diversity of our species. Science , this issue p. eabf7117
-1
Citation471
0
Save
1

High-coverage whole-genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios

Marta Byrska-Bishop et al.Sep 1, 2022
+39
R
W
M
The 1000 Genomes Project (1kGP) is the largest fully open resource of whole-genome sequencing (WGS) data consented for public distribution without access or use restrictions. The final, phase 3 release of the 1kGP included 2,504 unrelated samples from 26 populations and was based primarily on low-coverage WGS. Here, we present a high-coverage 3,202-sample WGS 1kGP resource, which now includes 602 complete trios, sequenced to a depth of 30X using Illumina. We performed single-nucleotide variant (SNV) and short insertion and deletion (INDEL) discovery and generated a comprehensive set of structural variants (SVs) by integrating multiple analytic methods through a machine learning model. We show gains in sensitivity and precision of variant calls compared to phase 3, especially among rare SNVs as well as INDELs and SVs spanning frequency spectrum. We also generated an improved reference imputation panel, making variants discovered here accessible for association studies.
1
Citation468
0
Save
Load More