SK
Sergey Koren
Author with expertise in RNA Sequencing Data Analysis
National Institutes of Health, National Human Genome Research Institute, ORCID
+ 11 more
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
74
(41% Open Access)
Cited by:
1,826
h-index:
75
/
i10-index:
152
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
195

The complete sequence of a human genome

Sergey Nurk et al.Apr 1, 2022
+97
A
S
S
Since its initial release in 2000, the human reference genome has covered only the euchromatic fraction of the genome, leaving important heterochromatic regions unfinished. Addressing the remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium presents a complete 3.055 billion-base pair sequence of a human genome, T2T-CHM13, that includes gapless assemblies for all chromosomes except Y, corrects errors in the prior references, and introduces nearly 200 million base pairs of sequence containing 1956 gene predictions, 99 of which are predicted to be protein coding. The completed regions include all centromeric satellite arrays, recent segmental duplications, and the short arms of all five acrocentric chromosomes, unlocking these complex regions of the genome to variational and functional studies.
195
Citation1,417
3
Save
5

The complete sequence of a human Y chromosome

Arang Rhie et al.Aug 26, 2023
+83
M
S
A
5
Paper
Citation88
3
Save
335

A complete reference genome improves analysis of human genetic variation

Sergey Aganezov et al.Oct 24, 2023
+30
D
S
S
Abstract Compared to its predecessors, the Telomere-to-Telomere CHM13 genome adds nearly 200 Mbp of sequence, corrects thousands of structural errors, and unlocks the most complex regions of the human genome to clinical and functional study. Here we demonstrate how the new reference universally improves read mapping and variant calling for 3,202 and 17 globally diverse samples sequenced with short and long reads, respectively. We identify hundreds of thousands of novel variants per sample—a new frontier for evolutionary and biomedical discovery. Simultaneously, the new reference eliminates tens of thousands of spurious variants per sample, including up to 12-fold reduction of false positives in 269 medically relevant genes. The vast improvement in variant discovery coupled with population and functional genomic resources position T2T-CHM13 to replace GRCh38 as the prevailing reference for human genetics. One Sentence Summary The T2T-CHM13 reference genome universally improves the analysis of human genetic variation.
0

Verkko: telomere-to-telomere assembly of diploid chromosomes

Mikko Rautiainen et al.Oct 13, 2023
+6
B
S
M
Abstract The Telomere-to-Telomere consortium recently assembled the first truly complete sequence of a human genome. To resolve the most complex repeats, this project relied on manual integration of ultra-long Oxford Nanopore sequencing reads with a high-resolution assembly graph built from long, accurate PacBio HiFi reads. We have improved and automated this strategy in Verkko, an iterative, graph-based pipeline for assembling complete, diploid genomes. Verkko begins with a multiplex de Bruijn graph built from long, accurate reads and progressively simplifies this graph via the integration of ultra-long reads and haplotype-specific markers. The result is a phased, diploid assembly of both haplotypes, with many chromosomes automatically assembled from telomere to telomere. Running Verkko on the HG002 human genome resulted in 20 of 46 diploid chromosomes assembled without gaps at 99.9997% accuracy. The complete assembly of diploid genomes is a critical step towards the construction of comprehensive pangenome databases and chromosome-scale comparative genomics.
0
Paper
Citation39
0
Save
103

Segmental duplications and their variation in a complete human genome

Mitchell Vollger et al.Oct 13, 2023
+17
P
X
M
ABSTRACT Despite their importance in disease and evolution, highly identical segmental duplications (SDs) have been among the last regions of the human reference genome (GRCh38) to be finished. Based on a complete telomere-to-telomere human genome (T2T-CHM13), we present the first comprehensive view of human SD organization. SDs account for nearly one-third of the additional sequence increasing the genome-wide estimate from 5.4% to 7.0% (218 Mbp). An analysis of 266 human genomes shows that 91% of the new T2T-CHM13 SD sequence (68.3 Mbp) better represents human copy number. We find that SDs show increased single-nucleotide variation diversity when compared to unique regions; we characterize methylation signatures that correlate with duplicate gene transcription and predict 182 novel protein-coding gene candidates. We find that 63% (35.11/55.7 Mbp) of acrocentric chromosomes consist of SDs distinct from rDNA and satellite sequences. Acrocentric SDs are 1.75-fold longer (p=0.00034) than other SDs, are frequently shared with autosomal pericentromeric regions, and are heteromorphic among human chromosomes. Comparing long-read assemblies from other human (n=12) and nonhuman primate (n=5) genomes, we use the T2T-CHM13 genome to systematically reconstruct the evolution and structural haplotype diversity of biomedically relevant ( LPA, SMN ) and duplicated genes ( TBC1D3, SRGAP2C, ARHGAP11B ) important in the expansion of the human frontal cortex. The analysis reveals unprecedented patterns of structural heterozygosity and massive evolutionary differences in SD organization between humans and their closest living relatives.
103
Paper
Citation17
0
Save
546

The structure, function, and evolution of a complete human chromosome 8

Glennis Logsdon et al.Oct 24, 2023
+26
P
M
G
ABSTRACT The complete assembly of each human chromosome is essential for understanding human biology and evolution. Using complementary long-read sequencing technologies, we complete the first linear assembly of a human autosome, chromosome 8. Our assembly resolves the sequence of five previously long-standing gaps, including a 2.08 Mbp centromeric α-satellite array, a 644 kbp defensin copy number polymorphism important for disease risk, and an 863 kbp variable number tandem repeat at chromosome 8q21.2 that can function as a neocentromere. We show that the centromeric α-satellite array is generally methylated except for a 73 kbp hypomethylated region of diverse higher-order α-satellite enriched with CENP-A nucleosomes, consistent with the location of the kinetochore. Using a dual long-read sequencing approach, we complete the assembly of the orthologous chromosome 8 centromeric regions in chimpanzee, orangutan, and macaque for the first time to reconstruct its evolutionary history. Comparative and phylogenetic analyses show that the higher-order α-satellite structure evolved specifically in the great ape ancestor, and the centromeric region evolved with a layered symmetry, with more ancient higher-order repeats located at the periphery adjacent to monomeric α-satellites. We estimate that the mutation rate of centromeric satellite DNA is accelerated at least 2.2-fold, and this acceleration extends beyond the higher-order α-satellite into the flanking sequence.
546
Citation16
0
Save
197

Epigenetic Patterns in a Complete Human Genome

Ariel Gershman et al.Oct 24, 2023
+14
H
M
A
ABSTRACT The completion of the first telomere-to-telomere human genome, T2T-CHM13, enables exploration of the full epigenome, removing limitations previously imposed by the missing reference sequence. Existing epigenetic studies omit unassembled and unmappable genomic regions (e.g . centromeres, pericentromeres, acrocentric chromosome arms, subtelomeres, segmental duplications, tandem repeats). Leveraging the new assembly, we were able to measure enrichment of epigenetic marks with short reads using k-mer assisted mapping methods. This granted array-level enrichment information to characterize the epigenetic regulation of these satellite repeats. Using nanopore sequencing data, we generated base level maps of the most complete human methylome ever produced. We examined methylation patterns in satellite DNA and revealed organized patterns of methylation along individual molecules. When exploring the centromeric epigenome, we discovered a distinctive dip in centromere methylation consistent with active sites of kinetochore assembly. Through long-read chromatin accessibility measurements (nanoNOMe) paired to CUT&RUN data, we found the hypomethylated region was extremely inaccessible and paired to CENP-A/B binding. With long-reads we interrogated allele-specific, longrange epigenetic patterns in complex macro-satellite arrays such as those involved in X chromosome inactivation. Using the single molecule measurements we can clustered reads based on methylation status alone distinguishing epigenetically heterogeneous and homogeneous areas. The analysis provides a framework to investigate the most elusive regions of the human genome, applying both long and short-read technology to grant new insights into epigenetic regulation.
197
Citation15
0
Save
166

Complete genomic and epigenetic maps of human centromeres

Nicolas Altemose et al.Oct 24, 2023
+55
A
G
N
Abstract Existing human genome assemblies have almost entirely excluded highly repetitive sequences within and near centromeres, limiting our understanding of their sequence, evolution, and essential role in chromosome segregation. Here, we present an extensive study of newly assembled peri/centromeric sequences representing 6.2% (189.9 Mb) of the first complete, telomere-to-telomere human genome assembly (T2T-CHM13). We discovered novel patterns of peri/centromeric repeat organization, variation, and evolution at both large and small length scales. We also found that inner kinetochore proteins tend to overlap the most recently duplicated subregions within centromeres. Finally, we compared chromosome X centromeres across a diverse panel of individuals and uncovered structural, epigenetic, and sequence variation at single-base resolution across these regions. In total, this work provides an unprecedented atlas of human centromeres to guide future studies of their complex and critical functions as well as their unique evolutionary dynamics. One-sentence summary Deep characterization of fully assembled human centromeres reveals their architecture and fine-scale organization, variation, and evolution.
166
Citation14
0
Save
0

The complete sequence and comparative analysis of ape sex chromosomes

Kateryna Makova et al.Aug 22, 2024
+81
R
B
K
Abstract Apes possess two sex chromosomes—the male-specific Y chromosome and the X chromosome, which is present in both males and females. The Y chromosome is crucial for male reproduction, with deletions being linked to infertility 1 . The X chromosome is vital for reproduction and cognition 2 . Variation in mating patterns and brain function among apes suggests corresponding differences in their sex chromosomes. However, owing to their repetitive nature and incomplete reference assemblies, ape sex chromosomes have been challenging to study. Here, using the methodology developed for the telomere-to-telomere (T2T) human genome, we produced gapless assemblies of the X and Y chromosomes for five great apes (bonobo ( Pan paniscus ), chimpanzee ( Pan troglodytes ), western lowland gorilla ( Gorilla gorilla gorilla ), Bornean orangutan ( Pongo pygmaeus ) and Sumatran orangutan ( Pongo abelii )) and a lesser ape (the siamang gibbon ( Symphalangus syndactylus )), and untangled the intricacies of their evolution. Compared with the X chromosomes, the ape Y chromosomes vary greatly in size and have low alignability and high levels of structural rearrangements—owing to the accumulation of lineage-specific ampliconic regions, palindromes, transposable elements and satellites. Many Y chromosome genes expand in multi-copy families and some evolve under purifying selection. Thus, the Y chromosome exhibits dynamic evolution, whereas the X chromosome is more stable. Mapping short-read sequencing data to these assemblies revealed diversity and selection patterns on sex chromosomes of more than 100 individual great apes. These reference assemblies are expected to inform human evolution and conservation genetics of non-human apes, all of which are endangered species.
0
Paper
Citation14
0
Save
49

Merfin: improved variant filtering and polishing via k-mer validation

Giulio Formenti et al.Oct 24, 2023
+6
B
A
G
Abstract Read mapping and variant calling approaches have been widely used for accurate genotyping and improving consensus quality assembled from noisy long reads. Variant calling accuracy relies heavily on the read quality, the precision of the read mapping algorithm and variant caller, and the criteria adopted to filter the calls. However, it is impossible to define a single set of optimal parameters, as they vary depending on the quality of the read set, the variant caller of choice, and the quality of the unpolished assembly. To overcome this issue, we have devised a new tool called Merfin ( k - mer based fin ishing tool), a k-mer based variant filtering algorithm for improved genotyping and polishing. Merfin evaluates the accuracy of a call based on expected k-mer multiplicity in the reads, independently of the quality of the read alignment and variant caller’s internal score. Moreover, we introduce novel assembly quality and completeness metrics that account for the expected genomic copy numbers. Merfin significantly increased the precision of a variant call and reduced frameshift errors when applied to PacBio HiFi, PacBio CLR, or Nanopore long read based assemblies. We demonstrate the utility while polishing the first complete human genome, a fully phased human genome, and non-human high-quality genomes.
Load More