HZ
Hao Zhang
Author with expertise in Electrocatalysis for Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
47
(19% Open Access)
Cited by:
8,771
h-index:
69
/
i10-index:
313
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Controllable Disorder Engineering in Oxygen-Incorporated MoS2 Ultrathin Nanosheets for Efficient Hydrogen Evolution

Junfeng Xie et al.Nov 5, 2013
Molybdenum disulfide (MoS2) has emerged as a promising electrocatalyst for catalyzing protons to hydrogen via the so-called hydrogen evolution reaction (HER). In order to enhance the HER activity, tremendous effort has been made to engineer MoS2 catalysts with either more active sites or higher conductivity. However, at present, synergistically structural and electronic modulations for HER still remain challenging. In this work, we demonstrate the successfully synergistic regulations of both structural and electronic benefits by controllable disorder engineering and simultaneous oxygen incorporation in MoS2 catalysts, leading to the dramatically enhanced HER activity. The disordered structure can offer abundant unsaturated sulfur atoms as active sites for HER, while the oxygen incorporation can effectively regulate the electronic structure and further improve the intrinsic conductivity. By means of controllable disorder engineering and oxygen incorporation, an optimized catalyst with a moderate degree of disorder was developed, exhibiting superior activity for electrocatalytic hydrogen evolution. In general, the optimized catalyst exhibits onset overpotential as low as 120 mV, accompanied by extremely large cathodic current density and excellent stability. This work will pave a new pathway for improving the electrocatalytic activity by synergistically structural and electronic modulations.
0

Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide

Jian Jiang et al.Jul 17, 2018
It is of great importance to understand the origin of high oxygen-evolving activity of state-of-the-art multimetal oxides/(oxy)hydroxides at atomic level. Herein we report an evident improvement of oxygen evolution reaction activity via incorporating iron and vanadium into nickel hydroxide lattices. X-ray photoelectron/absorption spectroscopies reveal the synergistic interaction between iron/vanadium dopants and nickel in the host matrix, which subtly modulates local coordination environments and electronic structures of the iron/vanadium/nickel cations. Further, in-situ X-ray absorption spectroscopic analyses manifest contraction of metal-oxygen bond lengths in the activated catalyst, with a short vanadium-oxygen bond distance. Density functional theory calculations indicate that the vanadium site of the iron/vanadium co-doped nickel (oxy)hydroxide gives near-optimal binding energies of oxygen evolution reaction intermediates and has lower overpotential compared with nickel and iron sites. These findings suggest that the doped vanadium with distorted geometric and disturbed electronic structures makes crucial contribution to high activity of the trimetallic catalyst.
0

Climbing the Apex of the ORR Volcano Plot via Binuclear Site Construction: Electronic and Geometric Engineering

Meiling Xiao et al.Oct 11, 2019
Great enthusiasm in single-atom catalysts (SACs) for the oxygen reduction reaction (ORR) has been aroused by the discovery of M-NX as a promising ORR catalysis center. However, the performance of SACs lags far behind that of state-of-the-art Pt due to the unsatisfactory adsorption-desorption behaviors of the reported catalytic centers. To address this issue, rational manipulation of the active site configuration toward a well-managed energy level and geometric structure is urgently desired, yet still remains a challenge. Herein, we report a novel strategy to accomplish this task through the construction of an Fe-Co dual-atom centered site. A spontaneously absorbed electron-withdrawing OH ligand was proposed to act proactively as an energy level modifier to empower easy intermediate desorption, while the triangular Fe-Co-OH coordination facilitates O-O bond scission. Benefiting from these attributes, the as-constructed FeCoN5-OH site enables an ORR onset potential and half-wave potential of up to 1.02 and 0.86 V (vs RHE), respectively, with an intrinsic activity over 20 times higher than the single-atom FeN4 site. Our finding not only opens up a novel strategy to tailor the electronic structure of an atomic site toward boosted activity but also provides new insights into the fundamental understanding of diatomic sites for ORR electrocatalysis.
0

Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution

Junfeng Xie et al.Sep 1, 2014
Exploring efficient electrocatalysts for hydrogen production is one of the most promising pathways to face the energy crisis in the new century. Herein, we highlight metallic molybdenum nitride (MoN) nanosheets with atomic thickness as highly efficient platinum-free electrocatalysts for the hydrogen evolution reaction (HER). Theoretical calculations demonstrate that the atomically-thin MoN nanosheets show metallic behavior, which can effectively facilitate electron transport during the catalytic process. Structural analyses reveal that the surfaces of the atomically-thin MoN nanosheets are wholly comprised of apical Mo atoms, thus providing an ideal material prototype to reveal the role of Mo atoms during HER catalysis. Through detailed investigations of the HER activity, the active surface sites of the atomically-thin MoN nanosheets are identified, of which the surface Mo atoms can act as the active sites for transforming protons into hydrogen. This novel mechanism will not only broaden our vision on understanding the HER mechanism for other Mo-based electrocatalysts, but also benefit the exploration and optimization of advanced catalysts for future energy production.
0

Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes

Shreya Mukherjee et al.Mar 23, 2018
Ammonia (NH3) is considered an important chemical for both agriculture fertilizer and renewable energy. The conventional Haber-Bosh process to produce NH3 is energy intensive and leads to significant CO2 emission. Alternatively, electrochemical synthesis of ammonia (ESA) through the nitrogen reduction reaction (NRR) by using renewable electricity has recently attracted significant attention. Herein, we report a metal-organic framework-derived nitrogen-doped nanoporous carbon as an electrocatalyst for the NRR. It exhibits a remarkable production rate of NH3 up to 3.4 × 10−6 mol cm−2 h−1 with a Faradaic efficiency (FE) of 10.2% at −0.3 V vs. RHE under room temperature and ambient pressure using aqueous 0.1 M KOH electrolyte. Increasing the temperature to 60 °C further improves production rates to 7.3 × 10−6 mol cm−2 h−1. The stability of the nitrogen-doped carbon electrocatalyst was demonstrated during an 18-h continuous test with constant production rates. First principles calculations were used to elucidate the possible active sites and reaction pathway. The moiety, which consists of three pyridinic N atoms (N3) adjacent with one carbon vacancy embedded in a carbon layer, is able to strongly adsorb N2 and further realize N≡N triple bond dissociation for the subsequent protonation process. The rate-determining step of the NRR is predicted to be the adsorption and bond activation of N2 molecule. Increasing overpotentials is favorable for the protonation process during NH3 generation. Further doping Fe into the nitrogen-doped carbon likely blocks the N3 active sites and facilitates the hydrogen evolution reaction, a strong competitor to the NRR, thus yielding negative effect on ammonia production. This work provides a new insight into the rational design and synthesis of nitrogen-doped and defect-rich carbon as efficient NRR catalysts for NH3 synthesis at ambient conditions.
0

A Universal Strategy for Hollow Metal Oxide Nanoparticles Encapsulated into B/N Co‐Doped Graphitic Nanotubes as High‐Performance Lithium‐Ion Battery Anodes

Hassina Tabassum et al.Jan 10, 2018
Yolk-shell nanostructures have received great attention for boosting the performance of lithium-ion batteries because of their obvious advantages in solving the problems associated with large volume change, low conductivity, and short diffusion path for Li+ ion transport. A universal strategy for making hollow transition metal oxide (TMO) nanoparticles (NPs) encapsulated into B, N co-doped graphitic nanotubes (TMO@BNG (TMO = CoO, Ni2 O3 , Mn3 O4 ) through combining pyrolysis with an oxidation method is reported herein. The as-made TMO@BNG exhibits the TMO-dependent lithium-ion storage ability, in which CoO@BNG nanotubes exhibit highest lithium-ion storage capacity of 1554 mA h g-1 at the current density of 96 mA g-1 , good rate ability (410 mA h g-1 at 1.75 A g-1 ), and high stability (almost 96% storage capacity retention after 480 cycles). The present work highlights the importance of introducing hollow TMO NPs with thin wall into BNG with large surface area for boosting LIBs in the terms of storage capacity, rate capability, and cycling stability.
0

Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site

Meiling Xiao et al.Feb 14, 2018
Herein, a novel binuclear active site structure, Co2NxCy, is intentionally designed and successfully fabricated to efficiently catalyze the oxygen reduction reaction (ORR), which is achieved by precisely controlling the atomic scale structure of bimetal-organic frameworks before pyrolysis. Through discovering a two-atom site with Co-Co distance at 2.1–2.2 Å from aberration-corrected scanning transmission electron microscopy (STEM), as well as a novel shortened Co-Co path (2.12 Å) from the X-ray absorption spectroscopy, we for the first time identified the binuclear Co2NX site in the pyrolyzed catalyst. Combined with density functional theory (DFT) calculation, the structure is further confirmed as Co2N5. Excitingly, the Co2N5 site performs approximately 12 times higher activity than the conventional CoN4 site and the corresponding catalyst shows unprecedented catalytic activity in acidic electrolyte with half-wave potential of 0.79 V, approaching the commercial Pt/C catalyst and presenting the best one among the Co-N-C catalysts. Theoretical density functional theory calculations reveal that the novel binuclear site exhibits considerably reduced thermodynamic barrier towards ORR, thus contributing to the much higher intrinsic activity. Our finding opens up a new path to design efficient M-Nx/C catalysts, thus pushing the fuel cell industry field one step ahead.
Load More