LZ
Lihong Zhao
Author with expertise in Lithium Battery Technologies
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
1
h-index:
25
/
i10-index:
38
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Revisiting sustainable resources in the combustion products of alumina-rich coal: Critical metal (Li, Ga, Nb, and REY) potential of ash from the Togtoh Power Plant, Inner Mongolia, China

Yanmin Zheng et al.Jul 31, 2024
Coal fly ash has gained much attention as a potential alternative source for extracting critical metals such as Li, Ga, Nb, and lanthanides and yttrium (REY). This study investigates their distribution characteristics and modes of occurrence in alumina-rich fly ashes from the Togtoh Power Plant in Inner Mongolia, using various analytical methods. The objective was to provide a reference for the pre-enrichment of critical metals in fly ash. Lithium is primarily present in the glass phase, and its concentration is extremely low in the crystalline phases. Lithium is mainly concentrated in "pure" aluminosilicate glass, and is present but at a low level in Ca-rich aluminosilicate glass. Gallium is primarily present in the glass phase and in corundum, while Nb mainly exists in submicron zircon particles surrounded by Si-Al-Ca glass. Lanthanides and yttrium primarily occur in the glass phase and in crystalline phases, including an intermediate phase composed of the three end-member minerals of the gorceixite-crandallite-florencite series, as well as in monazite, crystalline forms of iron oxides and REY oxides. The Li concentrations in the alumina-rich fly ashes range from 562 to 894 μg/g for Li2O, from 43.9 to 81.9 μg/g for Ga, from 58.7 to 70.6 μg/g for Nb2O5, and from 258 to 450 μg/g for REY oxides, respectively, indicating their substantial potential for resource recovery. Especially, the 2nd row fly ash has the highest contents of these metals, allowing for direct extraction without the necessity for complex pre-processing. Physical separation can further enrich Li, Ga, Nb, and REY in the fly ash. In particular, particle size separation enriches these elements in the < 20 μm size range and magnetic separation enriches Li, Ga, Nb, and REY (except Ce) in the non-magnetic fraction. However, Ce is significantly enriched in the magnetic fraction compared to the original fly ash.
0
Citation1
0
Save
0

Modeling the electro-chemo-mechanical failure at the lithium-solid electrolyte interface: Void evolution and lithium penetration

Ruqing Fang et al.Nov 1, 2024
The solid-solid contact interface is crucial for the reliability of solid-state energy storage systems. The contact condition becomes more complicated when lithium (Li) metal is used as the anode. The contact between solid electrolyte (SE) and Li metal is inferior compared to the liquid/solid interface in conventional Li-ion batteries. Experimental evidence has shown that improper operating conditions of solid-state batteries can lead to electro-chemo-mechanical failures at the Li/SE interface, including the formation of voids and the penetration of Li. In this study, a unified phase-field model is developed to investigate these two mechanisms. The model considers the coupled electro-chemo-mechanical processes including void diffusion, lattice annihilation, stripping and plating reactions, and plastic deformation of Li metal. The study begins with a revisit of the deformation-mechanism map for Li metal under a wide range of temperatures, stress, and deformation rates. This map serves as the basis for the mechanical characterization in the phase-field model. The large inelastic deformation of Li is considered by introducing an advection term into the Allen-Cahn equation, which is used to describe the dynamic evolution of the Li and void phases. The effects of current density and stack pressure on void evolution and Li penetration are studied based on the model predictions. By combining the simulation results with the experimental data from publications, we obtain the stable operation zone of stack pressure and applied current density. In this zone, the Li/SE interface can enable stable stripping and plating of Li metal. The same phase-field modeling framework is transferred to investigate the Li-Mg alloy/SE interface considering Li-Mg alloy is also used as the anode. The fundamental difference between Li/SE and Li-Mg/SE is analyzed accordingly. This study provides a useful tool for the design, manufacturing, and management of next-generation batteries by providing important scientific insights into the electro-chemo-mechanical processes of different anode materials under various operational conditions.
0

Single Na- and K-Ion-Conducting Sulfonated −NH-Linked Covalent Organic Frameworks

Wonmi Lee et al.Jan 17, 2025
Highly ion-conductive solid electrolytes of nonlithium ions (sodium or potassium ions) are necessary for pursuing a more cost-effective and sustainable energy storage. Here, two classes of sulfonated −NH-linked covalent organic frameworks (COFs), specifically designed for sodium or potassium ion conduction (named i-COF-2 (Na or K) and i-COF-3 (Na or K)), were synthesized through a straightforward, one-step process using affordable starting materials. Remarkably, these COFs demonstrate high ionic conductivity at room temperature─3.17 × 10–4 and 1.02 × 10–4 S cm–1 for i-COF-2 (Na) and i-COF-2 (K) and 2.75 × 10–4 and 1.42 × 10–4 S cm–1 for i-COF-3 (Na) and i-COF-3 (K)─without the need for additional salt or solvent. This enhanced performance, including low activation energies of 0.21 eV for both i-COF-2 (Na) and i-COF-2 (K) and of 0.24 and 0.25 eV for i-COF-3 (Na) and i-COF-3 (K), is attributed to the strategic incorporation of sulfonate groups and the directional channels within the COF structure. The Na+ and K+ ion high conductivities, low cost, and intrinsic framework stability of i-COF-2 (Na or K) and i-COF-3 (Na or K) provide promising solid electrolyte candidates for the exploration of sustainable energy storage.