GC
Giuseppe Colla
Author with expertise in Plant Biostimulants in Agriculture and Horticulture
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
23
(39% Open Access)
Cited by:
5,970
h-index:
78
/
i10-index:
207
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops

Youssef Rouphael et al.Nov 1, 2015
In the coming years, more sustainable horticultural practices should be developed to guarantee greater yield and yield stability, in order to meet the increasing food global demand. An environmentally-friendly way to achieve the former objectives is represented by the biostimulant functions displayed by arbuscular mycorrhizal fungi (AMF). AMF support plant nutrition by absorbing and translocating mineral nutrients beyond the depletion zones of plant rhizosphere (biofertilisers) and induce changes in secondary metabolism leading to improved nutraceutical compounds. In addition, AMF interfere with the phytohormone balance of host plants, thereby influencing plant development (bioregulators) and inducing tolerance to soil and environmental stresses (bioprotector). Maximum benefits from AMF activity will be achieved by adopting beneficial farming practices (e.g. reduction of chemical fertilisers and biocides), by inoculating efficient AMF strains and also by the appropriate selection of plant host/fungus combinations. This review gives an up to date overview of the recent advances in the production of quality AMF inocula and in the biostimulant properties of AMF on plant health, nutrition and quality of horticultural crops (fruit trees, vegetables, flower crops and ornamentals). The agronomical, physiological and biochemical processes conferring tolerance to drought, salinity, nutrient deficiency, heavy metal contaminations and adverse soil pH in mycorrhizal plants are encompassed. In addition, the influence of bacterial interactions and farm management on AMF is discussed. Finally, the review identifies several future research areas relevant to AMF to exploit and improve the biostimulant effects of AMF in horticulture.
0
Citation573
0
Save
0

Protein hydrolysates as biostimulants in horticulture

Giuseppe Colla et al.Sep 4, 2015
In recent years, new strategies have been proposed in order to improve the sustainability of production systems for horticultural crops. A promising tool would be the use of substances and/or microorganisms defined also as ‘biostimulants’ able to enhance crop quality parameters, nutrient efficiency and abiotic stress tolerance. Protein hydrolysates (PHs) are an important group of plant biostimulants based on a mixture of peptides and amino acids that have received increasing attention in the recent years due to their positive effects on crop performances. PHs are mainly produced by enzymatic and/or chemical hydrolysis of proteins from animal- or plant-derived raw materials. The current review gives an overview of the biostimulant properties of PHs on productivity and product quality of horticultural crops, in particular fruit trees, vegetables, flower crops and ornamentals. After a brief introduction on PHs as plant biostimulants, this review focuses on the classification and chemical composition of PHs according to the source of proteins and method of protein hydrolysis. The plant uptake and transport of amino acids and peptides and the effects of PHs on primary and secondary metabolism as well as the biochemical and physiological processes conferring tolerance to abiotic stress are also covered. The review concludes by proposing several perspectives for future research aiming to understand the mode of action of PHs based on their composition and also to define the suitable time and dose of application.
0
Paper
Citation500
0
Save
0

Synergistic Biostimulatory Action: Designing the Next Generation of Plant Biostimulants for Sustainable Agriculture

Youssef Rouphael et al.Nov 13, 2018
Over the past 10 years, interest in plant biostimulants (PBs) has been on the rise compelled by the growing interest of scientists, extension specialists, private industry, and growers in integrating these products in the array of environmentally friendly tools that secure improved crop performance and yield stability. Based on the new EU regulation PBs are defined through claimed agronomic effects, such as improvement of nutrient use efficiency, tolerance to abiotic stressors and crop quality. This definition entails diverse organic and inorganic substances and/or microorganisms such as humic acids, protein hydrolysates, seaweed extracts, mycorrhizal fungi, and N-fixing bacteria. The current mini-review provides an overview of the direct (stimulatory on C and N metabolism) and indirect (enhancing nutrient uptake and modulating root morphology) mechanisms by which microbial and non-microbial PBs improve nutrient efficiency, plant performance, and physiological status, resilience to environmental stressors and stimulate plant microbiomes. The scientific advances underlying synergistic and additive effects of microbial and non-microbial PBs are compiled and discussed for the first time. The review identifies several perspectives for future research between the scientific community and private industry to design and develop a second generation of PBs products (biostimulant 2.0) with specific biostimulatory action to render agriculture more sustainable and resilient.
0
Paper
Citation366
0
Save
0

Impact of grafting on product quality of fruit vegetables

Youssef Rouphael et al.Oct 10, 2010
In horticultural industry, the focus has traditionally been on yield. However, in recent years consumers interest in the quality of vegetable products has increased worldwide. Vegetable quality is a broad term and includes physical properties (1), flavor (2), and health-related compounds (3). Grafting vegetable plants onto resistant rootstocks is an effective tool that may enable the susceptible scion to control soil-borne diseases, environmental stresses and increase yield. However, in these cases, the characteristics of the three areas might be affected by grafting as a result of the translocation of metabolites associated with fruit quality to the scion through the xylem and/or modification of the physiological processes of the scion. Possible quality characteristics showing these effects could be fruit appearance (size, shape, color, and absence of defects and decay), firmness, texture, flavor (sugar, acids, and aroma volatiles) and health-related compounds (desired compounds such as minerals, vitamins, and carotenoids as well as undesired compounds such as heavy metals, pesticides and nitrates). There are many conflicting reports on changes in fruit quality due to grafting and whether grafting effects are advantageous or deleterious. The differences in reported results may be attributable in part to different production methods and environments, type of rootstock/scion combinations used, and harvest date. This report gives an overview of the recent literature on the effects of grafting on fruit vegetable (Solanaceae and Cucurbitaceae) quality including physical properties, flavor and health-related compounds of the product. The review will conclude by identifying several prospects for future researches aiming to improve the product quality of grafted vegetables.
0

Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis

Giuseppe Colla et al.Sep 9, 2014
The aim of this study was to evaluate the biostimulant action (hormone like activity, nitrogen uptake, and growth stimulation) of a plant-derived protein hydrolysate by means of two laboratory bioassays: a corn (Zea mays L.) coleoptile elongation rate test (Experiment 1), a rooting test on tomato cuttings (Experiment 2); and two greenhouse experiments: a dwarf pea (Pisum sativum L.) growth test (Experiment 3), and a tomato (Solanum lycopersicum L.) nitrogen uptake trial (Experiment 4). Protein hydrolysate treatments of corn caused an increase in coleoptile elongation rate when compared to the control, in a dose-dependent fashion, with no significant differences between the concentrations 0.75, 1.5, and 3.0 ml/L, and inodole-3-acetic acid treatment. The auxin-like effect of the protein hydrolysate on corn has been also observed in the rooting experiment of tomato cuttings. The shoot, root dry weight, root length, and root area were significantly higher by 21, 35, 24, and 26%, respectively, in tomato treated plants with the protein hydrolysate at 6 ml/L than untreated plants. In Experiment 3, the application of the protein hydrolysate at all doses (0.375, 0.75, 1.5, and 3.0 ml/L) significantly increased the shoot length of the gibberellin-deficient dwarf pea plants by an average value of 33% in comparison with the control treatment. Increasing the concentration of the protein hydrolysate from 0 to 10 ml/L increased the total dry biomass, SPAD index, and leaf nitrogen content by 20.5, 15, and 21.5%, respectively. Thus the application of plant-derived protein hydrolysate containing amino acids and small peptides elicited a hormone-like activity, enhanced nitrogen uptake and consequently crop performances.
0

Trichoderma-Based Biostimulants Modulate Rhizosphere Microbial Populations and Improve N Uptake Efficiency, Yield, and Nutritional Quality of Leafy Vegetables

Nunzio Fiorentino et al.Jun 5, 2018
Microbial inoculants such as Trichoderma-based products are receiving great interest among researchers and agricultural producers for their potential to improve crop productivity, nutritional quality as well as resistance to plant pathogens/pests and numerous environmental stresses. Two greenhouse experiments were conducted to assess the effects of Trichoderma-based biostimulants under suboptimal, optimal and supraoptimal levels of nitrogen (N) fertilization in two leafy vegetables: Iceberg lettuce (Lactuca sativa L.) and rocket (Eruca sativa Mill.). The yield, nutritional characteristics, N uptake and mineral composition were analyzed for each vegetable crop after inoculation with Trichoderma strains T. virens (GV41) or T. harzianum (T22), and results were compared to non-inoculated plants. In addition, the effect of the Trichoderma-based biostimulants on microbes associated with the rhizosphere in terms of prokaryotic and eurkaryotic composition and concentration using DGGE was also evaluated. Trichoderma-based biostimulants, in particular GV41, positively increased lettuce and rocket yield in the unfertilized plots. The highest marketable lettuce fresh yield was recorded with either of the biostimulant inoculations when plants were supplied with optimal levels of N. The inoculation of rocket with GV41, and to a lesser degree with T22, elicited an increase in total ascorbic acid under both optimal and high N conditions. T. virens GV41 increased N-use efficiency of lettuce, and favoured the uptake of native N present in the soil of both lettuce and rocket. The positive effect of biostimulants on nutrient uptake and crop growth was species-dependent, being more marked with lettuce. The best biostimulation effects from the Trichoderma treatments were observed in both crops when grown under low N availability. The Trichoderma inoculation strongly influenced the composition of eukaryotic populations in the rhizosphere, in particularly exerting different effects with low N levels in comparison to the N fertilized plots. Overall, inoculations with Trichoderma may be considered as a viable strategy to manage the nutrient content of leafy horticulture crops cultivated in low fertility soils, and assist vegetable growers in reducing the use of synthetic fertilizers, developing sustainable management practices to optimize N use efficiency.
0
Citation266
0
Save
Load More