RS
Rohit Shenoy
Author with expertise in Memristive Devices for Neuromorphic Computing
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
2,427
h-index:
18
/
i10-index:
24
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Phase change memory technology

Geoffrey Burr et al.Mar 1, 2010
The authors survey the current state of phase change memory (PCM), a nonvolatile solid-state memory technology built around the large electrical contrast between the highly resistive amorphous and highly conductive crystalline states in so-called phase change materials. PCM technology has made rapid progress in a short time, having passed older technologies in terms of both sophisticated demonstrations of scaling to small device dimensions, as well as integrated large-array demonstrators with impressive retention, endurance, performance, and yield characteristics. They introduce the physics behind PCM technology, assess how its characteristics match up with various potential applications across the memory-storage hierarchy, and discuss its strengths including scalability and rapid switching speed. Challenges for the technology are addressed, including the design of PCM cells for low reset current, the need to control device-to-device variability, and undesirable changes in the phase change material that can be induced by the fabrication procedure. They then turn to issues related to operation of PCM devices, including retention, device-to-device thermal cross-talk, endurance, and bias-polarity effects. Several factors that can be expected to enhance PCM in the future are addressed, including multilevel cell technology for PCM (which offers higher density through the use of intermediate resistance states), the role of coding, and possible routes to an ultrahigh-density PCM technology.
0

Access devices for 3D crosspoint memory

Geoffrey Burr et al.Jul 1, 2014
The emergence of new nonvolatile memory (NVM) technologies—such as phase change memory, resistive, and spin-torque-transfer magnetic RAM—has been motivated by exciting applications such as storage class memory, embedded nonvolatile memory, enhanced solid-state disks, and neuromorphic computing. Many of these applications call for such NVM devices to be packed densely in vast “crosspoint” arrays offering many gigabytes if not terabytes of solid-state storage. In such arrays, access to any small subset of the array for accurate reading or low-power writing requires a strong nonlinearity in the IV characteristics, so that the currents passing through the selected devices greatly exceed the residual leakage through the nonselected devices. This nonlinearity can either be included explicitly, by adding a discrete access device at each crosspoint, or implicitly with an NVM device which also exhibits a highly nonlinear IV characteristic. This article reviews progress made toward implementing such access device functionality, focusing on the need to stack such crosspoint arrays vertically above the surface of a silicon wafer for increased effective areal density. The authors start with a brief overview of circuit-level considerations for crosspoint memory arrays, and discuss the role of the access device in minimizing leakage through the many nonselected cells, while delivering the right voltages and currents to the selected cell. The authors then summarize the criteria that an access device must fulfill in order to enable crosspoint memory. The authors review current research on various discrete access device options, ranging from conventional silicon-based semiconductor devices, to oxide semiconductors, threshold switch devices, oxide tunnel barriers, and devices based on mixed-ionic-electronic-conduction. Finally, the authors discuss various approaches for self-selected nonvolatile memories based on Resistive RAM.